{"title":"Parameterized approximation algorithms for weighted vertex cover","authors":"Soumen Mandal , Pranabendu Misra , Ashutosh Rai , Saket Saurabh","doi":"10.1016/j.tcs.2024.114870","DOIUrl":null,"url":null,"abstract":"<div><p>A <em>vertex cover</em> of a graph is a set of vertices of the graph such that every edge has at least one endpoint in it. In this work, we study <span>Weighted Vertex Cover</span> with solution size as a parameter. Formally, in the <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>W</mi><mo>)</mo></math></span>-<span>Vertex Cover</span> problem, given a graph <em>G</em>, an integer <em>k</em>, a positive rational <em>W</em>, and a weight function <span><math><mi>w</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, the question is whether <em>G</em> has a vertex cover of size at most <em>k</em> of weight at most <em>W</em>, with <em>k</em> being the parameter. An <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>-bi-criteria approximation algorithm for <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>W</mi><mo>)</mo></math></span>-<span>Vertex Cover</span> either produces a vertex cover <em>S</em> such that <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>≤</mo><mi>a</mi><mi>k</mi></math></span> and <span><math><mi>w</mi><mo>(</mo><mi>S</mi><mo>)</mo><mo>≤</mo><mi>b</mi><mi>W</mi></math></span>, or decides that there is no vertex cover of size at most <em>k</em> of weight at most <em>W</em>. We obtain the following results.</p><ul><li><span>•</span><span><p>A simple <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-bi-criteria approximation algorithm for <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>W</mi><mo>)</mo></math></span>-<span>Vertex Cover</span> in polynomial time by modifying the standard <span>LP</span>-rounding algorithm.</p></span></li><li><span>•</span><span><p>A simple exact parameterized algorithm for <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>W</mi><mo>)</mo></math></span>-<span>Vertex Cover</span> running in <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mn>1.4656</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span> time<span><span><sup>1</sup></span></span>.</p></span></li><li><span>•</span><span><p>A <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ϵ</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-approximation algorithm for <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>W</mi><mo>)</mo></math></span>-<span>Vertex Cover</span> running in <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mn>1.4656</mn></mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>ϵ</mi><mo>)</mo><mi>k</mi></mrow></msup><mo>)</mo></math></span> time.</p></span></li><li><span>•</span><span><p>A <span><math><mo>(</mo><mn>1.5</mn><mo>,</mo><mn>1.5</mn><mo>)</mo></math></span>-approximation algorithm for <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>W</mi><mo>)</mo></math></span>-<span>Vertex Cover</span> running in <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mn>1.414</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span> time.</p></span></li><li><span>•</span><span><p>A <span><math><mo>(</mo><mn>2</mn><mo>−</mo><mi>δ</mi><mo>,</mo><mn>2</mn><mo>−</mo><mi>δ</mi><mo>)</mo></math></span>-approximation algorithm for <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>W</mi><mo>)</mo></math></span>-<span>Vertex Cover</span> running in <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mrow><mo>(</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mfrac><mrow><mi>δ</mi><mi>k</mi><mo>(</mo><mn>1</mn><mo>−</mo><mn>2</mn><mi>δ</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>δ</mi></mrow></mfrac></mrow><mrow><mfrac><mrow><mi>δ</mi><mi>k</mi><mo>(</mo><mn>1</mn><mo>−</mo><mn>2</mn><mi>δ</mi><mo>)</mo></mrow><mrow><mn>2</mn><mi>δ</mi></mrow></mfrac></mrow></msubsup><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>δ</mi><mi>k</mi><mo>+</mo><mi>i</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>δ</mi><mi>k</mi><mo>−</mo><mfrac><mrow><mn>2</mn><mi>i</mi><mi>δ</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>2</mn><mi>δ</mi></mrow></mfrac></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>)</mo></mrow></math></span> time for any <span><math><mi>δ</mi><mo><</mo><mn>0.5</mn></math></span>. For example, for <span><math><mo>(</mo><mn>1.75</mn><mo>,</mo><mn>1.75</mn><mo>)</mo></math></span> and <span><math><mo>(</mo><mn>1.9</mn><mo>,</mo><mn>1.9</mn><mo>)</mo></math></span>-approximation algorithms, we get running times of <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mn>1.272</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span> and <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mn>1.151</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span> respectively.</p></span></li></ul><p>Our algorithms (expectedly) do not improve upon the running times of the existing algorithms for the unweighted version of <span>Vertex Cover</span>. When compared to algorithms for the weighted version, our algorithms are the first ones to the best of our knowledge which work with arbitrary weights, and they perform well when the solution size is much smaller than the total weight of the desired solution.</p></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1021 ","pages":"Article 114870"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524004870","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A vertex cover of a graph is a set of vertices of the graph such that every edge has at least one endpoint in it. In this work, we study Weighted Vertex Cover with solution size as a parameter. Formally, in the -Vertex Cover problem, given a graph G, an integer k, a positive rational W, and a weight function , the question is whether G has a vertex cover of size at most k of weight at most W, with k being the parameter. An -bi-criteria approximation algorithm for -Vertex Cover either produces a vertex cover S such that and , or decides that there is no vertex cover of size at most k of weight at most W. We obtain the following results.
•
A simple -bi-criteria approximation algorithm for -Vertex Cover in polynomial time by modifying the standard LP-rounding algorithm.
•
A simple exact parameterized algorithm for -Vertex Cover running in time1.
•
A -approximation algorithm for -Vertex Cover running in time.
•
A -approximation algorithm for -Vertex Cover running in time.
•
A -approximation algorithm for -Vertex Cover running in time for any . For example, for and -approximation algorithms, we get running times of and respectively.
Our algorithms (expectedly) do not improve upon the running times of the existing algorithms for the unweighted version of Vertex Cover. When compared to algorithms for the weighted version, our algorithms are the first ones to the best of our knowledge which work with arbitrary weights, and they perform well when the solution size is much smaller than the total weight of the desired solution.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.