Haiyan Jin , Yujia Chen , Fengyuan Zuo , Haonan Su , YuanLin Zhang
{"title":"Zero-CSC: Low-light image enhancement with zero-reference color self-calibration","authors":"Haiyan Jin , Yujia Chen , Fengyuan Zuo , Haonan Su , YuanLin Zhang","doi":"10.1016/j.jvcir.2024.104293","DOIUrl":null,"url":null,"abstract":"<div><p>Zero-Reference Low-Light Image Enhancement (LLIE) techniques mainly focus on grey-scale inhomogeneities, and few methods consider how to explicitly recover a dark scene to achieve enhancements in color and overall illumination. In this paper, we introduce a novel Zero-Reference Color Self-Calibration framework for enhancing low-light images, termed as Zero-CSC. It effectively emphasizes channel-wise representations that contain fine-grained color information, achieving a natural result in a progressive manner. Furthermore, we propose a Light Up (LU) module with large-kernel convolutional blocks to improve overall illumination, which is implemented with a simple U-Net and further simplified with a light-weight structure. Experiments on representative datasets show that our model consistently achieves state-of-the-art performance in image signal-to-noise ratio, structural similarity, and color accuracy, setting new records on the challenging SICE dataset with improvements of 23.7% in image signal-to-noise ratio and 5.3% in structural similarity compared to the most advanced methods.</p></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"104 ","pages":"Article 104293"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002499","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Zero-Reference Low-Light Image Enhancement (LLIE) techniques mainly focus on grey-scale inhomogeneities, and few methods consider how to explicitly recover a dark scene to achieve enhancements in color and overall illumination. In this paper, we introduce a novel Zero-Reference Color Self-Calibration framework for enhancing low-light images, termed as Zero-CSC. It effectively emphasizes channel-wise representations that contain fine-grained color information, achieving a natural result in a progressive manner. Furthermore, we propose a Light Up (LU) module with large-kernel convolutional blocks to improve overall illumination, which is implemented with a simple U-Net and further simplified with a light-weight structure. Experiments on representative datasets show that our model consistently achieves state-of-the-art performance in image signal-to-noise ratio, structural similarity, and color accuracy, setting new records on the challenging SICE dataset with improvements of 23.7% in image signal-to-noise ratio and 5.3% in structural similarity compared to the most advanced methods.
期刊介绍:
The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.