Luca Visinelli , Tsutomu T. Yanagida , Michael Zantedeschi
{"title":"Do neutrinos bend? Consequences of an ultralight gauge field as dark matter","authors":"Luca Visinelli , Tsutomu T. Yanagida , Michael Zantedeschi","doi":"10.1016/j.dark.2024.101659","DOIUrl":null,"url":null,"abstract":"<div><p>An ultralight gauge boson could address the missing cosmic dark matter, with its transverse modes contributing to a relevant component of the galactic halo today. We show that, in the presence of a coupling between the gauge boson and neutrinos, these transverse modes affect the propagation of neutrinos in the galactic core. Neutrinos emitted from galactic or extra-galactic supernovae could be delayed by <span><math><mrow><mi>δ</mi><mi>t</mi><mo>=</mo><mfenced><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>8</mn></mrow></msup><mtext>–</mtext><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msup></mrow></mfenced></mrow></math></span> <!--> <!-->s for the gauge boson masses <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub><mo>=</mo><mfenced><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>23</mn></mrow></msup><mtext>–</mtext><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>19</mn></mrow></msup></mrow></mfenced></mrow></math></span> <!--> <!-->eV and the coupling with the neutrino <span><math><mrow><mi>g</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>27</mn></mrow></msup><mtext>–</mtext><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>20</mn></mrow></msup></mrow></math></span>. While we do not focus on a specific formation mechanism for the gauge boson as the dark matter in the early Universe, we comment on some possible realizations. We discuss model-dependent current bounds on the gauge coupling from fifth-force experiments, as well as future explorations involving supernovae neutrinos. We consider the concrete case of the DUNE facility, where the coupling can be tested down to <span><math><mrow><mi>g</mi><mo>≃</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>27</mn></mrow></msup></mrow></math></span> for neutrinos coming from a supernova event at a distance <span><math><mrow><mi>d</mi><mo>=</mo><mn>10</mn></mrow></math></span> <!--> <!-->kpc from Earth.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101659"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424002413","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
An ultralight gauge boson could address the missing cosmic dark matter, with its transverse modes contributing to a relevant component of the galactic halo today. We show that, in the presence of a coupling between the gauge boson and neutrinos, these transverse modes affect the propagation of neutrinos in the galactic core. Neutrinos emitted from galactic or extra-galactic supernovae could be delayed by s for the gauge boson masses eV and the coupling with the neutrino . While we do not focus on a specific formation mechanism for the gauge boson as the dark matter in the early Universe, we comment on some possible realizations. We discuss model-dependent current bounds on the gauge coupling from fifth-force experiments, as well as future explorations involving supernovae neutrinos. We consider the concrete case of the DUNE facility, where the coupling can be tested down to for neutrinos coming from a supernova event at a distance kpc from Earth.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.