Enhanced permeability prediction in porous media using particle swarm optimization with multi-source integration

Zhiping Chen , Jia Zhang , Daren Zhang , Xiaolin Chang , Wei Zhou
{"title":"Enhanced permeability prediction in porous media using particle swarm optimization with multi-source integration","authors":"Zhiping Chen ,&nbsp;Jia Zhang ,&nbsp;Daren Zhang ,&nbsp;Xiaolin Chang ,&nbsp;Wei Zhou","doi":"10.1016/j.aiig.2024.100090","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately and efficiently predicting the permeability of porous media is essential for addressing a wide range of hydrogeological issues. However, the complexity of porous media often limits the effectiveness of individual prediction methods. This study introduces a novel Particle Swarm Optimization-based Permeability Integrated Prediction model (PSO-PIP), which incorporates a particle swarm optimization algorithm enhanced with dynamic clustering and adaptive parameter tuning (KGPSO). The model integrates multi-source data from the Lattice Boltzmann Method (LBM), Pore Network Modeling (PNM), and Finite Difference Method (FDM). By assigning optimal weight coefficients to the outputs of these methods, the model minimizes deviations from actual values and enhances permeability prediction performance. Initially, the computational performances of the LBM, PNM, and FDM are comparatively analyzed on datasets consisting of sphere packings and real rock samples. It is observed that these methods exhibit computational biases in certain permeability ranges. The PSO-PIP model is proposed to combine the strengths of each computational approach and mitigate their limitations. The PSO-PIP model consistently produces predictions that are highly congruent with actual permeability values across all prediction intervals, significantly enhancing prediction accuracy. The outcomes of this study provide a new tool and perspective for the comprehensive, rapid, and accurate prediction of permeability in porous media.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"5 ","pages":"Article 100090"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666544124000315/pdfft?md5=b1d09a2cb0aeba96843adc16601b4089&pid=1-s2.0-S2666544124000315-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544124000315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately and efficiently predicting the permeability of porous media is essential for addressing a wide range of hydrogeological issues. However, the complexity of porous media often limits the effectiveness of individual prediction methods. This study introduces a novel Particle Swarm Optimization-based Permeability Integrated Prediction model (PSO-PIP), which incorporates a particle swarm optimization algorithm enhanced with dynamic clustering and adaptive parameter tuning (KGPSO). The model integrates multi-source data from the Lattice Boltzmann Method (LBM), Pore Network Modeling (PNM), and Finite Difference Method (FDM). By assigning optimal weight coefficients to the outputs of these methods, the model minimizes deviations from actual values and enhances permeability prediction performance. Initially, the computational performances of the LBM, PNM, and FDM are comparatively analyzed on datasets consisting of sphere packings and real rock samples. It is observed that these methods exhibit computational biases in certain permeability ranges. The PSO-PIP model is proposed to combine the strengths of each computational approach and mitigate their limitations. The PSO-PIP model consistently produces predictions that are highly congruent with actual permeability values across all prediction intervals, significantly enhancing prediction accuracy. The outcomes of this study provide a new tool and perspective for the comprehensive, rapid, and accurate prediction of permeability in porous media.

利用多源集成的粒子群优化技术增强多孔介质的渗透性预测
准确有效地预测多孔介质的渗透性对于解决各种水文地质问题至关重要。然而,多孔介质的复杂性往往限制了单个预测方法的有效性。本研究介绍了一种新颖的基于粒子群优化的渗透率综合预测模型(PSO-PIP),该模型采用了一种具有动态聚类和自适应参数调整(KGPSO)功能的粒子群优化算法。该模型整合了来自格子波尔兹曼法(LBM)、孔隙网络建模(PNM)和有限差分法(FDM)的多源数据。通过为这些方法的输出分配最佳权重系数,该模型最大限度地减少了与实际值的偏差,提高了渗透率预测性能。首先,在球状填料和实际岩石样本组成的数据集上对 LBM、PNM 和 FDM 的计算性能进行了比较分析。结果发现,这些方法在某些渗透率范围内存在计算偏差。我们提出了 PSO-PIP 模型,以结合每种计算方法的优势并减轻其局限性。在所有预测区间内,PSO-PIP 模型都能得出与实际渗透率值高度一致的预测结果,大大提高了预测精度。这项研究的成果为全面、快速、准确地预测多孔介质的渗透性提供了新的工具和视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信