Baoe Li , Xiaopeng Fu , Donghui Wang , Feng Peng , Haipeng Li , Chunyong Liang , Hongshui Wang
{"title":"Preparation and characterization of mesoporous HA coating with paclitaxel loaded lignin nanospheres on titanium surface","authors":"Baoe Li , Xiaopeng Fu , Donghui Wang , Feng Peng , Haipeng Li , Chunyong Liang , Hongshui Wang","doi":"10.1016/j.jor.2024.09.008","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Primary malignant bone tumor is a disease that can lead to death. The usually applied clinical treatment strategy is surgical resection of the primary tumor. However, tumor cells are difficult to clean up, easy to make the tumor recurrence, and the bone defect caused by surgical resection also hindered the postoperative recovery.</p></div><div><h3>Materials and methods</h3><p>Herein, in this work, mesoporous hydroxyapatite (HA) coating with petal-structure was prepared on titanium (Ti) implant surfaces by micro-arc oxidation (MAO) to accelerate the bone growth, and then paclitaxel (PTX) loaded lignin nanospheres were deposited into the HA coatings to get a sustained release for killing residual tumor cells.</p></div><div><h3>Results</h3><p>The results showed that many gaps and holes of micro-scale were formed in the petal-structured HA coatings, they worked as traps for the PTX loaded nanospheres to enhance the deposited amount and immobilization stability, playing good role of drug loading platform. The encapsulation of PTX by lignin ensured a lower release rate and a higher sustaining release time when compared with the PTX without encapsulation. In addition, the HA coating with PTX loaded lignin nanospheres showed higher killing effect to tumor cells than to osteoblast.</p></div><div><h3>Conclusion</h3><p>The mesoporous HA coating with paclitaxel loaded lignin nanospheres endowed the titanium surface with good biological property and tumor cell-killing effect, so the obtained Ti-based material had a highly hopeful application as the localized implant for therapy of primary malignant bone tumor.</p></div>","PeriodicalId":16633,"journal":{"name":"Journal of orthopaedics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of orthopaedics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0972978X24003143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Primary malignant bone tumor is a disease that can lead to death. The usually applied clinical treatment strategy is surgical resection of the primary tumor. However, tumor cells are difficult to clean up, easy to make the tumor recurrence, and the bone defect caused by surgical resection also hindered the postoperative recovery.
Materials and methods
Herein, in this work, mesoporous hydroxyapatite (HA) coating with petal-structure was prepared on titanium (Ti) implant surfaces by micro-arc oxidation (MAO) to accelerate the bone growth, and then paclitaxel (PTX) loaded lignin nanospheres were deposited into the HA coatings to get a sustained release for killing residual tumor cells.
Results
The results showed that many gaps and holes of micro-scale were formed in the petal-structured HA coatings, they worked as traps for the PTX loaded nanospheres to enhance the deposited amount and immobilization stability, playing good role of drug loading platform. The encapsulation of PTX by lignin ensured a lower release rate and a higher sustaining release time when compared with the PTX without encapsulation. In addition, the HA coating with PTX loaded lignin nanospheres showed higher killing effect to tumor cells than to osteoblast.
Conclusion
The mesoporous HA coating with paclitaxel loaded lignin nanospheres endowed the titanium surface with good biological property and tumor cell-killing effect, so the obtained Ti-based material had a highly hopeful application as the localized implant for therapy of primary malignant bone tumor.
期刊介绍:
Journal of Orthopaedics aims to be a leading journal in orthopaedics and contribute towards the improvement of quality of orthopedic health care. The journal publishes original research work and review articles related to different aspects of orthopaedics including Arthroplasty, Arthroscopy, Sports Medicine, Trauma, Spine and Spinal deformities, Pediatric orthopaedics, limb reconstruction procedures, hand surgery, and orthopaedic oncology. It also publishes articles on continuing education, health-related information, case reports and letters to the editor. It is requested to note that the journal has an international readership and all submissions should be aimed at specifying something about the setting in which the work was conducted. Authors must also provide any specific reasons for the research and also provide an elaborate description of the results.