A finite element analysis of patellofemoral joint biomechanics: Exploring potential causes of postoperative anterior knee pain following unicompartmental knee arthroplasty
Ziyou Yan , Deng Li , Zhiqing Cai , Hao Sun , Ruofan Ma , Shuqiang Ma , Jie Xu
{"title":"A finite element analysis of patellofemoral joint biomechanics: Exploring potential causes of postoperative anterior knee pain following unicompartmental knee arthroplasty","authors":"Ziyou Yan , Deng Li , Zhiqing Cai , Hao Sun , Ruofan Ma , Shuqiang Ma , Jie Xu","doi":"10.1016/j.jor.2024.08.017","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Anterior knee pain is a common complication following unicompartmental knee arthroplasty (UKA). This study aimed to elucidate the mechanism of anterior knee pain after UKA by examining the biomechanical characteristics of the patellofemoral joint.</p></div><div><h3>Methods</h3><p>This study employs the finite element analysis method. A healthy model of the right lower limb was created using CT scans of an intact right lower limb from a healthy woman. Based on this model, a preoperative pathological model was generated by removing the meniscus and part of the articular cartilage. The UKA prosthesis was then applied to this model with five different bearing thicknesses: 5 mm, 7 mm, 10 mm, 11 mm, and 13 mm. To simulate various degrees of knee joint flexion, the femur was rotated relative to the knee joint's rotational axis, producing lower limb models at flexion angles of 0°, 30°, 60°, 90°, and 120°. We applied a constant force from the center of the femoral head to the center of the ankle joint to simulate lower limb loading during squatting. The simulations were conducted using Ansys 17.0.</p></div><div><h3>Results</h3><p>Both overstuffing and understuffing increased the peak stress on the patellar cartilage, with overstuffing having a more pronounced effect. Compared to healthy and balanced models, overstuffed and understuffed models exhibited abnormal stress distribution and stress concentration in the patellar cartilage during knee flexion.</p></div><div><h3>Conclusion</h3><p>Overstuffing and understuffing lead to residual varus or valgus deformities after UKA, causing mechanical abnormalities in the patellofemoral joint. These abnormalities, characterized by irregular stress distribution and excessive stress, result in cartilage damage, exacerbate wear in the patellofemoral joint and consequently lead to the occurrence of anterior knee pain.</p></div>","PeriodicalId":16633,"journal":{"name":"Journal of orthopaedics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of orthopaedics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0972978X24003052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Anterior knee pain is a common complication following unicompartmental knee arthroplasty (UKA). This study aimed to elucidate the mechanism of anterior knee pain after UKA by examining the biomechanical characteristics of the patellofemoral joint.
Methods
This study employs the finite element analysis method. A healthy model of the right lower limb was created using CT scans of an intact right lower limb from a healthy woman. Based on this model, a preoperative pathological model was generated by removing the meniscus and part of the articular cartilage. The UKA prosthesis was then applied to this model with five different bearing thicknesses: 5 mm, 7 mm, 10 mm, 11 mm, and 13 mm. To simulate various degrees of knee joint flexion, the femur was rotated relative to the knee joint's rotational axis, producing lower limb models at flexion angles of 0°, 30°, 60°, 90°, and 120°. We applied a constant force from the center of the femoral head to the center of the ankle joint to simulate lower limb loading during squatting. The simulations were conducted using Ansys 17.0.
Results
Both overstuffing and understuffing increased the peak stress on the patellar cartilage, with overstuffing having a more pronounced effect. Compared to healthy and balanced models, overstuffed and understuffed models exhibited abnormal stress distribution and stress concentration in the patellar cartilage during knee flexion.
Conclusion
Overstuffing and understuffing lead to residual varus or valgus deformities after UKA, causing mechanical abnormalities in the patellofemoral joint. These abnormalities, characterized by irregular stress distribution and excessive stress, result in cartilage damage, exacerbate wear in the patellofemoral joint and consequently lead to the occurrence of anterior knee pain.
期刊介绍:
Journal of Orthopaedics aims to be a leading journal in orthopaedics and contribute towards the improvement of quality of orthopedic health care. The journal publishes original research work and review articles related to different aspects of orthopaedics including Arthroplasty, Arthroscopy, Sports Medicine, Trauma, Spine and Spinal deformities, Pediatric orthopaedics, limb reconstruction procedures, hand surgery, and orthopaedic oncology. It also publishes articles on continuing education, health-related information, case reports and letters to the editor. It is requested to note that the journal has an international readership and all submissions should be aimed at specifying something about the setting in which the work was conducted. Authors must also provide any specific reasons for the research and also provide an elaborate description of the results.