A martingale approach to Gaussian fluctuations and laws of iterated logarithm for Ewens–Pitman model

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Bernard Bercu , Stefano Favaro
{"title":"A martingale approach to Gaussian fluctuations and laws of iterated logarithm for Ewens–Pitman model","authors":"Bernard Bercu ,&nbsp;Stefano Favaro","doi":"10.1016/j.spa.2024.104493","DOIUrl":null,"url":null,"abstract":"<div><p>The Ewens–Pitman model refers to a distribution for random partitions of <span><math><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow><mo>=</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></mrow></math></span>, which is indexed by a pair of parameters <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>θ</mi><mo>&gt;</mo><mo>−</mo><mi>α</mi></mrow></math></span>, with <span><math><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow></math></span> corresponding to the Ewens model in population genetics. The large <span><math><mi>n</mi></math></span> asymptotic properties of the Ewens–Pitman model have been the subject of numerous studies, with the focus being on the number <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of partition sets and the number <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> of partition subsets of size <span><math><mi>r</mi></math></span>, for <span><math><mrow><mi>r</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></mrow></math></span>. While for <span><math><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow></math></span> asymptotic results have been obtained in terms of almost-sure convergence and Gaussian fluctuations, for <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> only almost-sure convergences are available, with the proof for <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> being given only as a sketch. In this paper, we make use of martingales to develop a unified and comprehensive treatment of the large <span><math><mi>n</mi></math></span> asymptotic behaviours of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> for <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, providing alternative, and rigorous, proofs of the almost-sure convergences of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>, and covering the gap of Gaussian fluctuations. We also obtain new laws of the iterated logarithm for <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"178 ","pages":"Article 104493"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924001996","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The Ewens–Pitman model refers to a distribution for random partitions of [n]={1,,n}, which is indexed by a pair of parameters α[0,1) and θ>α, with α=0 corresponding to the Ewens model in population genetics. The large n asymptotic properties of the Ewens–Pitman model have been the subject of numerous studies, with the focus being on the number Kn of partition sets and the number Kr,n of partition subsets of size r, for r=1,,n. While for α=0 asymptotic results have been obtained in terms of almost-sure convergence and Gaussian fluctuations, for α(0,1) only almost-sure convergences are available, with the proof for Kr,n being given only as a sketch. In this paper, we make use of martingales to develop a unified and comprehensive treatment of the large n asymptotic behaviours of Kn and Kr,n for α(0,1), providing alternative, and rigorous, proofs of the almost-sure convergences of Kn and Kr,n, and covering the gap of Gaussian fluctuations. We also obtain new laws of the iterated logarithm for Kn and Kr,n.

高斯波动的鞅方法和埃文斯-皮特曼模型的迭代对数定律
Ewens-Pitman模型指的是[n]={1,...,n}的随机分区分布,它由一对参数α∈[0,1)和θ>-α索引,其中α=0对应于种群遗传学中的Ewens模型。关于 Ewens-Pitman 模型的大 n 渐近特性,已有许多研究,重点是 r=1,...n 时的分割集数 Kn 和大小为 r 的分割子集数 Kr,n。对于 α=0 已有几乎确定收敛和高斯波动的渐近结果,而对于 α∈(0,1),只有几乎确定收敛的结果,Kr,n 的证明仅给出了一个草图。在本文中,我们利用马氏定理对 α∈(0,1) 时 Kn 和 Kr,n 的大 n 渐近行为进行了统一而全面的处理,提供了 Kn 和 Kr,n 的几乎确定收敛性的替代和严格证明,并涵盖了高斯波动的差距。我们还得到了 Kn 和 Kr,n 的新的迭代对数定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信