An Efficient Self-Learning Framework For Interactive Spoken Dialog Systems

Hitesh Tulsiani, David M. Chan, Shalini Ghosh, Garima Lalwani, Prabhat Pandey, Ankish Bansal, Sri Garimella, Ariya Rastrow, Björn Hoffmeister
{"title":"An Efficient Self-Learning Framework For Interactive Spoken Dialog Systems","authors":"Hitesh Tulsiani, David M. Chan, Shalini Ghosh, Garima Lalwani, Prabhat Pandey, Ankish Bansal, Sri Garimella, Ariya Rastrow, Björn Hoffmeister","doi":"arxiv-2409.10515","DOIUrl":null,"url":null,"abstract":"Dialog systems, such as voice assistants, are expected to engage with users\nin complex, evolving conversations. Unfortunately, traditional automatic speech\nrecognition (ASR) systems deployed in such applications are usually trained to\nrecognize each turn independently and lack the ability to adapt to the\nconversational context or incorporate user feedback. In this work, we introduce\na general framework for ASR in dialog systems that can go beyond learning from\nsingle-turn utterances and learn over time how to adapt to both explicit\nsupervision and implicit user feedback present in multi-turn conversations. We\naccomplish that by leveraging advances in student-teacher learning and\ncontext-aware dialog processing, and designing contrastive self-supervision\napproaches with Ohm, a new online hard-negative mining approach. We show that\nleveraging our new framework compared to traditional training leads to relative\nWER reductions of close to 10% in real-world dialog systems, and up to 26% on\npublic synthetic data.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dialog systems, such as voice assistants, are expected to engage with users in complex, evolving conversations. Unfortunately, traditional automatic speech recognition (ASR) systems deployed in such applications are usually trained to recognize each turn independently and lack the ability to adapt to the conversational context or incorporate user feedback. In this work, we introduce a general framework for ASR in dialog systems that can go beyond learning from single-turn utterances and learn over time how to adapt to both explicit supervision and implicit user feedback present in multi-turn conversations. We accomplish that by leveraging advances in student-teacher learning and context-aware dialog processing, and designing contrastive self-supervision approaches with Ohm, a new online hard-negative mining approach. We show that leveraging our new framework compared to traditional training leads to relative WER reductions of close to 10% in real-world dialog systems, and up to 26% on public synthetic data.
交互式口语对话系统的高效自学习框架
语音助手等对话系统需要与用户进行复杂、不断变化的对话。遗憾的是,在这类应用中部署的传统自动语音识别(ASR)系统通常是训练成独立识别每个回合的,缺乏适应对话语境或结合用户反馈的能力。在这项工作中,我们为对话系统中的 ASR 引入了一个通用框架,该框架不仅可以从单次转折语句中学习,还可以随着时间的推移学习如何适应多转折对话中的明示监督和隐式用户反馈。我们利用在师生学习和语境感知对话处理方面取得的进步,并通过 Ohm(一种新的在线硬负挖掘方法)设计对比性自我监督方法,从而实现了这一目标。我们的研究表明,与传统的训练方法相比,利用我们的新框架可以在真实世界的对话系统中将相对 WER 降低近 10%,而在公开的合成数据中最高可降低 26%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信