Speaking from Coarse to Fine: Improving Neural Codec Language Model via Multi-Scale Speech Coding and Generation

Haohan Guo, Fenglong Xie, Dongchao Yang, Xixin Wu, Helen Meng
{"title":"Speaking from Coarse to Fine: Improving Neural Codec Language Model via Multi-Scale Speech Coding and Generation","authors":"Haohan Guo, Fenglong Xie, Dongchao Yang, Xixin Wu, Helen Meng","doi":"arxiv-2409.11630","DOIUrl":null,"url":null,"abstract":"The neural codec language model (CLM) has demonstrated remarkable performance\nin text-to-speech (TTS) synthesis. However, troubled by ``recency bias\", CLM\nlacks sufficient attention to coarse-grained information at a higher temporal\nscale, often producing unnatural or even unintelligible speech. This work\nproposes CoFi-Speech, a coarse-to-fine CLM-TTS approach, employing multi-scale\nspeech coding and generation to address this issue. We train a multi-scale\nneural codec, CoFi-Codec, to encode speech into a multi-scale discrete\nrepresentation, comprising multiple token sequences with different time\nresolutions. Then, we propose CoFi-LM that can generate this representation in\ntwo modes: the single-LM-based chain-of-scale generation and the\nmultiple-LM-based stack-of-scale generation. In experiments, CoFi-Speech\nsignificantly outperforms single-scale baseline systems on naturalness and\nspeaker similarity in zero-shot TTS. The analysis of multi-scale coding\ndemonstrates the effectiveness of CoFi-Codec in learning multi-scale discrete\nspeech representations while keeping high-quality speech reconstruction. The\ncoarse-to-fine multi-scale generation, especially for the stack-of-scale\napproach, is also validated as a crucial approach in pursuing a high-quality\nneural codec language model for TTS.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The neural codec language model (CLM) has demonstrated remarkable performance in text-to-speech (TTS) synthesis. However, troubled by ``recency bias", CLM lacks sufficient attention to coarse-grained information at a higher temporal scale, often producing unnatural or even unintelligible speech. This work proposes CoFi-Speech, a coarse-to-fine CLM-TTS approach, employing multi-scale speech coding and generation to address this issue. We train a multi-scale neural codec, CoFi-Codec, to encode speech into a multi-scale discrete representation, comprising multiple token sequences with different time resolutions. Then, we propose CoFi-LM that can generate this representation in two modes: the single-LM-based chain-of-scale generation and the multiple-LM-based stack-of-scale generation. In experiments, CoFi-Speech significantly outperforms single-scale baseline systems on naturalness and speaker similarity in zero-shot TTS. The analysis of multi-scale coding demonstrates the effectiveness of CoFi-Codec in learning multi-scale discrete speech representations while keeping high-quality speech reconstruction. The coarse-to-fine multi-scale generation, especially for the stack-of-scale approach, is also validated as a crucial approach in pursuing a high-quality neural codec language model for TTS.
从粗到细:通过多尺度语音编码和生成改进神经编解码器语言模型
神经编解码语言模型(CLM)在文本到语音(TTS)合成中表现出了卓越的性能。然而,受 "时间偏差 "的困扰,CLM 对更高时间范围内的粗粒度信息缺乏足够的关注,往往会产生不自然甚至无法理解的语音。本研究提出了一种从粗到细的 CLM-TTS 方法 CoFi-Speech,它采用多尺度语音编码和生成来解决这一问题。我们训练了一种多尺度神经编解码器 CoFi-Codec,将语音编码为多尺度离散表示,包括具有不同时间分辨率的多个标记序列。然后,我们提出了 CoFi-LM,它能以两种模式生成这种表示:基于单 LM 的尺度链生成和基于多 LM 的尺度堆叠生成。在实验中,CoFi-Speech 在零镜头 TTS 的自然度和说话人相似度方面明显优于单尺度基准系统。对多尺度编码的分析表明,CoFi-Codec 能有效学习多尺度离散语音表示,同时保持高质量语音重建。从粗到细的多尺度生成,尤其是尺度堆栈方法,也被证实是为 TTS 建立高质量神经编解码语言模型的关键方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信