Towards Automatic Assessment of Self-Supervised Speech Models using Rank

Zakaria Aldeneh, Vimal Thilak, Takuya Higuchi, Barry-John Theobald, Tatiana Likhomanenko
{"title":"Towards Automatic Assessment of Self-Supervised Speech Models using Rank","authors":"Zakaria Aldeneh, Vimal Thilak, Takuya Higuchi, Barry-John Theobald, Tatiana Likhomanenko","doi":"arxiv-2409.10787","DOIUrl":null,"url":null,"abstract":"This study explores using embedding rank as an unsupervised evaluation metric\nfor general-purpose speech encoders trained via self-supervised learning (SSL).\nTraditionally, assessing the performance of these encoders is\nresource-intensive and requires labeled data from the downstream tasks.\nInspired by the vision domain, where embedding rank has shown promise for\nevaluating image encoders without tuning on labeled downstream data, this work\nexamines its applicability in the speech domain, considering the temporal\nnature of the signals. The findings indicate rank correlates with downstream\nperformance within encoder layers across various downstream tasks and for in-\nand out-of-domain scenarios. However, rank does not reliably predict the\nbest-performing layer for specific downstream tasks, as lower-ranked layers can\noutperform higher-ranked ones. Despite this limitation, the results suggest\nthat embedding rank can be a valuable tool for monitoring training progress in\nSSL speech models, offering a less resource-demanding alternative to\ntraditional evaluation methods.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores using embedding rank as an unsupervised evaluation metric for general-purpose speech encoders trained via self-supervised learning (SSL). Traditionally, assessing the performance of these encoders is resource-intensive and requires labeled data from the downstream tasks. Inspired by the vision domain, where embedding rank has shown promise for evaluating image encoders without tuning on labeled downstream data, this work examines its applicability in the speech domain, considering the temporal nature of the signals. The findings indicate rank correlates with downstream performance within encoder layers across various downstream tasks and for in- and out-of-domain scenarios. However, rank does not reliably predict the best-performing layer for specific downstream tasks, as lower-ranked layers can outperform higher-ranked ones. Despite this limitation, the results suggest that embedding rank can be a valuable tool for monitoring training progress in SSL speech models, offering a less resource-demanding alternative to traditional evaluation methods.
利用等级自动评估自监督语音模型
传统上,评估这些编码器的性能是资源密集型的,需要下游任务的标注数据。受视觉领域的启发,嵌入等级已显示出评估图像编码器的前景,而无需对标注的下游数据进行调整。研究结果表明,在各种下游任务以及域内和域外场景中,等级与编码器层内的下游性能相关。然而,排名并不能可靠地预测特定下游任务中表现最佳的层,因为排名较低的层可能比排名较高的层表现更好。尽管存在这种局限性,但研究结果表明,嵌入排名可以成为监控SSL 语音模型训练进度的重要工具,为传统评估方法提供了一种资源需求较少的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信