AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma

Radhika Achikanath Chirakkara, Christoph Federrath, Amit Seta
{"title":"AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma","authors":"Radhika Achikanath Chirakkara, Christoph Federrath, Amit Seta","doi":"arxiv-2409.12151","DOIUrl":null,"url":null,"abstract":"We introduce $\\texttt{A}$strophysical $\\texttt{H}$ybrid-$\\texttt{K}$inetic\nsimulations with the $\\texttt{flASH}$ code ($\\texttt{AHKASH}$) -- a new Hybrid\nparticle-in-cell (PIC) code developed within the framework of the multi-physics\ncode $\\texttt{FLASH}$. The new code uses a second-order accurate Boris\nintegrator and a predictor-predictor-corrector algorithm for advancing the\nHybrid-kinetic equations, using the constraint transport method to ensure that\nmagnetic fields are divergence-free. The code supports various interpolation\nschemes between the particles and grid cells, with post-interpolation smoothing\nto reduce finite particle noise. We further implement a $\\delta f$ method to\nstudy instabilities in weakly collisional plasmas. The new code is tested on\nstandard physical problems such as the motion of charged particles in uniform\nand spatially varying magnetic fields, the propagation of Alfv\\'en and whistler\nwaves, and Landau damping of ion acoustic waves. We test different\ninterpolation kernels and demonstrate the necessity of performing\npost-interpolation smoothing. We couple the $\\texttt{TurbGen}$ turbulence\ndriving module to the new Hybrid PIC code, allowing us to test the code on the\nhighly complex physical problem of the turbulent dynamo. To investigate\nsteady-state turbulence with a fixed sonic Mach number, it is important to\nmaintain isothermal plasma conditions. Therefore, we introduce a novel cooling\nmethod for Hybrid PIC codes and provide tests and calibrations of this method\nto keep the plasma isothermal. We describe and test the `hybrid precision'\nmethod, which significantly reduces (by a factor $\\sim1.5$) the computational\ncost, without compromising the accuracy of the numerical solutions. Finally, we\ntest the parallel scalability of the new code, showing excellent scaling up to\n10,000~cores.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce $\texttt{A}$strophysical $\texttt{H}$ybrid-$\texttt{K}$inetic simulations with the $\texttt{flASH}$ code ($\texttt{AHKASH}$) -- a new Hybrid particle-in-cell (PIC) code developed within the framework of the multi-physics code $\texttt{FLASH}$. The new code uses a second-order accurate Boris integrator and a predictor-predictor-corrector algorithm for advancing the Hybrid-kinetic equations, using the constraint transport method to ensure that magnetic fields are divergence-free. The code supports various interpolation schemes between the particles and grid cells, with post-interpolation smoothing to reduce finite particle noise. We further implement a $\delta f$ method to study instabilities in weakly collisional plasmas. The new code is tested on standard physical problems such as the motion of charged particles in uniform and spatially varying magnetic fields, the propagation of Alfv\'en and whistler waves, and Landau damping of ion acoustic waves. We test different interpolation kernels and demonstrate the necessity of performing post-interpolation smoothing. We couple the $\texttt{TurbGen}$ turbulence driving module to the new Hybrid PIC code, allowing us to test the code on the highly complex physical problem of the turbulent dynamo. To investigate steady-state turbulence with a fixed sonic Mach number, it is important to maintain isothermal plasma conditions. Therefore, we introduce a novel cooling method for Hybrid PIC codes and provide tests and calibrations of this method to keep the plasma isothermal. We describe and test the `hybrid precision' method, which significantly reduces (by a factor $\sim1.5$) the computational cost, without compromising the accuracy of the numerical solutions. Finally, we test the parallel scalability of the new code, showing excellent scaling up to 10,000~cores.
AHKASH:用于模拟天体物理无碰撞等离子体的新型混合粒子-单元代码
我们介绍了使用$texttt{flash}$代码($\texttt{AHKASH}$)进行的$texttt{A}$物理$texttt{H}$混合-$texttt{K}$动力学模拟--这是在多物理代码$\texttt{FLASH}$的框架下开发的一种新的混合粒子在胞(PIC)代码。新代码使用二阶精确鲍里斯积分器和预测器-预测器-校正器算法推进混合动力学方程,使用约束传输方法确保磁场无发散。代码支持粒子和网格单元之间的各种插值方案,并通过插值后平滑处理来减少有限粒子噪声。我们进一步实现了一种 $\delta f$ 方法来研究弱碰撞等离子体中的不稳定性。新代码在标准物理问题上进行了测试,如带电粒子在均匀磁场和空间变化磁场中的运动、Alfv\'en 波和惠斯勒波的传播以及离子声波的朗道阻尼。我们测试了不同的插值核,并证明了进行后插值平滑的必要性。我们将$texttt{TurbGen}$湍流驱动模块与新的混合PIC代码耦合,允许我们在湍流动力这一高度复杂的物理问题上测试代码。为了研究具有固定声速马赫数的静态湍流,保持等温等离子体条件非常重要。因此,我们为混合 PIC 代码引入了一种新型冷却方法,并对该方法进行了测试和校准,以保持等离子体等温。我们描述并测试了 "混合精度 "方法,该方法在不影响数值解精度的情况下,显著降低了计算成本(降低了 1.5 美元)。最后,我们测试了新代码的并行可扩展性,显示了高达 10,000~cores 的出色扩展能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信