Resource approximation for the $λμ$-calculus

Davide Barbarossa
{"title":"Resource approximation for the $λμ$-calculus","authors":"Davide Barbarossa","doi":"arxiv-2409.11587","DOIUrl":null,"url":null,"abstract":"The $\\lambda\\mu$-calculus plays a central role in the theory of programming\nlanguages as it extends the Curry-Howard correspondence to classical logic. A\nmajor drawback is that it does not satisfy B\\\"ohm's Theorem and it lacks the\ncorresponding notion of approximation. On the contrary, we show that Ehrhard\nand Regnier's Taylor expansion can be easily adapted, thus providing a resource\nconscious approximation theory. This produces a sensible $\\lambda\\mu$-theory\nwith which we prove some advanced properties of the $\\lambda\\mu$-calculus, such\nas Stability and Perpendicular Lines Property, from which the impossibility of\nparallel computations follows.","PeriodicalId":501208,"journal":{"name":"arXiv - CS - Logic in Computer Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The $\lambda\mu$-calculus plays a central role in the theory of programming languages as it extends the Curry-Howard correspondence to classical logic. A major drawback is that it does not satisfy B\"ohm's Theorem and it lacks the corresponding notion of approximation. On the contrary, we show that Ehrhard and Regnier's Taylor expansion can be easily adapted, thus providing a resource conscious approximation theory. This produces a sensible $\lambda\mu$-theory with which we prove some advanced properties of the $\lambda\mu$-calculus, such as Stability and Perpendicular Lines Property, from which the impossibility of parallel computations follows.
$λμ$ 微积分的资源近似值
$\lambda\mu$微积分在编程语言理论中扮演着核心角色,因为它将库里-霍华德对应关系扩展到了经典逻辑。它的一个主要缺点是不满足B(ohm)定理,也缺乏相应的近似概念。相反,我们证明了埃哈德和雷格尼埃的泰勒展开可以很容易地加以调整,从而提供了一种有资源意识的近似理论。这就产生了一个合理的$\lambda\mu$理论,我们用它证明了$\lambda\mu$算术的一些高级性质,如稳定性和垂直线性质,由此得出平行计算的不可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信