On a Generalization of Heyting Algebras II

Amirhossein Akbar Tabatabai, Majid Alizadeh, Masoud Memarzadeh
{"title":"On a Generalization of Heyting Algebras II","authors":"Amirhossein Akbar Tabatabai, Majid Alizadeh, Masoud Memarzadeh","doi":"arxiv-2409.10642","DOIUrl":null,"url":null,"abstract":"A $\\nabla$-algebra is a natural generalization of a Heyting algebra, unifying\nseveral algebraic structures, including bounded lattices, Heyting algebras,\ntemporal Heyting algebras, and the algebraic representation of dynamic\ntopological systems. In the prequel to this paper [3], we explored the\nalgebraic properties of various varieties of $\\nabla$-algebras, their\nsubdirectly-irreducible and simple elements, their closure under\nDedekind-MacNeille completion, and their Kripke-style representation. In this sequel, we first introduce $\\nabla$-spaces as a common generalization\nof Priestley and Esakia spaces, through which we develop a duality theory for\ncertain categories of $\\nabla$-algebras. Then, we reframe these dualities in\nterms of spectral spaces and provide an algebraic characterization of natural\nfamilies of dynamic topological systems over Priestley, Esakia, and spectral\nspaces. Additionally, we present a ring-theoretic representation for some\nfamilies of $\\nabla$-algebras. Finally, we introduce several logical systems to\ncapture different varieties of $\\nabla$-algebras, offering their algebraic,\nKripke, topological, and ring-theoretic semantics, and establish a deductive\ninterpolation theorem for some of these systems.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A $\nabla$-algebra is a natural generalization of a Heyting algebra, unifying several algebraic structures, including bounded lattices, Heyting algebras, temporal Heyting algebras, and the algebraic representation of dynamic topological systems. In the prequel to this paper [3], we explored the algebraic properties of various varieties of $\nabla$-algebras, their subdirectly-irreducible and simple elements, their closure under Dedekind-MacNeille completion, and their Kripke-style representation. In this sequel, we first introduce $\nabla$-spaces as a common generalization of Priestley and Esakia spaces, through which we develop a duality theory for certain categories of $\nabla$-algebras. Then, we reframe these dualities in terms of spectral spaces and provide an algebraic characterization of natural families of dynamic topological systems over Priestley, Esakia, and spectral spaces. Additionally, we present a ring-theoretic representation for some families of $\nabla$-algebras. Finally, we introduce several logical systems to capture different varieties of $\nabla$-algebras, offering their algebraic, Kripke, topological, and ring-theoretic semantics, and establish a deductive interpolation theorem for some of these systems.
论海廷代数的广义化 II
$\nabla$-代数是海廷代数的自然广义化,它统一了多种代数结构,包括有界网格、海廷代数、时态海廷代数以及动态拓扑系统的代数表示。在本文的前传[3]中,我们探讨了$\nabla$-gebras的各种代数性质、它们的次直接不可约元素和简单元素、它们在Dedekind-MacNeille完成下的闭包以及它们的克里普克式表示。在这个续篇中,我们首先介绍了$\nabla$空间作为普里斯特里空间和埃萨基亚空间的普通泛化,通过它我们发展了$\nabla$-gebras的某些类别的对偶理论。然后,我们用谱空间来重构这些对偶性,并提供了普里斯特里、埃萨基亚和谱空间上动态拓扑系统自然族的代数特征。此外,我们还提出了一些 $\nabla$- 算法族的环论表示。最后,我们引入了几个逻辑系统来捕捉不同种类的$\nabla$-gebras,提供了它们的代数、克里普克、拓扑和环论语义,并为其中一些系统建立了演绎插值定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信