On the number of prime factors with a given multiplicity over h-free and h-full numbers

Sourabhashis Das, Wentang Kuo, Yu-Ru Liu
{"title":"On the number of prime factors with a given multiplicity over h-free and h-full numbers","authors":"Sourabhashis Das, Wentang Kuo, Yu-Ru Liu","doi":"arxiv-2409.11275","DOIUrl":null,"url":null,"abstract":"Let $k$ and $n$ be natural numbers. Let $\\omega_k(n)$ denote the number of\ndistinct prime factors of $n$ with multiplicity $k$ as studied by Elma and the\nthird author. We obtain asymptotic estimates for the first and the second\nmoments of $\\omega_k(n)$ when restricted to the set of $h$-free and $h$-full\nnumbers. We prove that $\\omega_1(n)$ has normal order $\\log \\log n$ over\n$h$-free numbers, $\\omega_h(n)$ has normal order $\\log \\log n$ over $h$-full\nnumbers, and both of them satisfy the Erd\\H{o}s-Kac Theorem. Finally, we prove\nthat the functions $\\omega_k(n)$ with $1 < k < h$ do not have normal order over\n$h$-free numbers and $\\omega_k(n)$ with $k > h$ do not have normal order over\n$h$-full numbers.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $k$ and $n$ be natural numbers. Let $\omega_k(n)$ denote the number of distinct prime factors of $n$ with multiplicity $k$ as studied by Elma and the third author. We obtain asymptotic estimates for the first and the second moments of $\omega_k(n)$ when restricted to the set of $h$-free and $h$-full numbers. We prove that $\omega_1(n)$ has normal order $\log \log n$ over $h$-free numbers, $\omega_h(n)$ has normal order $\log \log n$ over $h$-full numbers, and both of them satisfy the Erd\H{o}s-Kac Theorem. Finally, we prove that the functions $\omega_k(n)$ with $1 < k < h$ do not have normal order over $h$-free numbers and $\omega_k(n)$ with $k > h$ do not have normal order over $h$-full numbers.
关于在无h和满h数中具有给定倍数的质因数个数
设 $k$ 和 $n$ 均为自然数。让 $\omega_k(n)$ 表示埃尔马和第三作者所研究的乘数为 $k$ 的 $n$ 的不同素因子的个数。我们得到了$\omega_k(n)$的第一项和第二项矩的渐近估计值,当它们被限制在$h$无素数和$h$有素数的集合中时。我们证明,$\omega_1(n)$ 在$h$无穷数上具有常阶$\log \log n$,$\omega_h(n)$ 在$h$有穷数上具有常阶$\log \log n$,并且它们都满足厄德/霍布斯-卡克定理。最后,我们证明$1 < k < h$的函数$\omega_k(n)$在$h$无穷数上没有正常阶,而$k > h$的函数$\omega_k(n)$在$h$全数上没有正常阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信