Quantum geodesic flows on graphs

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Edwin Beggs, Shahn Majid
{"title":"Quantum geodesic flows on graphs","authors":"Edwin Beggs,&nbsp;Shahn Majid","doi":"10.1007/s11005-024-01860-6","DOIUrl":null,"url":null,"abstract":"<div><p>We revisit the construction of quantum Riemannian geometries on graphs starting from a hermitian metric compatible connection, which always exists. We use this method to find quantum Levi-Civita connections on the <i>n</i>-leg star graph for <span>\\(n=2,3,4\\)</span> and find the same phenomenon as recently found for the <span>\\(A_n\\)</span> Dynkin graph that the metric length for each inbound arrow has to exceed the length in the other direction by a multiple, here <span>\\(\\sqrt{n}\\)</span>. We then study quantum geodesics on graphs and construct these on the 4-leg graph and on the integer lattice line <span>\\(\\mathbb {Z}\\)</span> with a general edge-symmetric metric.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-024-01860-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01860-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We revisit the construction of quantum Riemannian geometries on graphs starting from a hermitian metric compatible connection, which always exists. We use this method to find quantum Levi-Civita connections on the n-leg star graph for \(n=2,3,4\) and find the same phenomenon as recently found for the \(A_n\) Dynkin graph that the metric length for each inbound arrow has to exceed the length in the other direction by a multiple, here \(\sqrt{n}\). We then study quantum geodesics on graphs and construct these on the 4-leg graph and on the integer lattice line \(\mathbb {Z}\) with a general edge-symmetric metric.

Abstract Image

图上的量子大地流
我们重温了在图上构建量子黎曼几何图形的方法,它是从一个始终存在的与赫米提度量兼容的连接开始的。我们用这种方法找到了 \(n=2,3,4\) n 脚星形图上的量子列维-奇维塔连接,并发现了最近在 \(A_n\) Dynkin 图上发现的相同现象,即每个向内箭头的度量长度必须超过另一方向长度的倍数,这里是 \(\sqrt{n}\)。然后,我们研究图上的量子测地线,并在 4 脚图上和具有一般边对称度量的整数网格线 \(\mathbb {Z}\) 上构建量子测地线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信