{"title":"Symmetric structures and dynamic analysis of a (2+1)-dimensional generalized Benny-Luke equation","authors":"Jie Sun, Qiulan Zhao and Xinyue Li","doi":"10.1088/1402-4896/ad7538","DOIUrl":null,"url":null,"abstract":"We study the symmetric structures and dynamic analysis of a (2 + 1)-dimensional generalized Benny-Luke (GBL) equation based on the Lie symmetry method, the GBL equation is an important non-integrable model of water waves. Specifically, we construct multiple exact solutions of the GBL equation and obtain its nonlocally related systems. Firstly, the Lie point symmetries and conservation laws of the GBL equation are computed, and then we get the reduced ordinary differential equation from one of the conservation laws. Multiple methods, for example, the dynamical systems method, the power series method, the homogeneous balancing method and generalized variable separation method, are used to solve the ordinary differential equation and abundant exact solutions of the GBL equation are got. Finally, we extend these exact solutions by discrete symmetries, and give three-dimensional graphs of partial exact solutions. In addition, we construct the nonlocally related PDE systems, which contains the potential systems from the conservation laws and an inverse system from a Lie point symmetry of the GBL equation. These findings reveal the dynamical behavior behind the GBL equation and broaden the range of nonlinear water wave model solutions.","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":"281 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad7538","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the symmetric structures and dynamic analysis of a (2 + 1)-dimensional generalized Benny-Luke (GBL) equation based on the Lie symmetry method, the GBL equation is an important non-integrable model of water waves. Specifically, we construct multiple exact solutions of the GBL equation and obtain its nonlocally related systems. Firstly, the Lie point symmetries and conservation laws of the GBL equation are computed, and then we get the reduced ordinary differential equation from one of the conservation laws. Multiple methods, for example, the dynamical systems method, the power series method, the homogeneous balancing method and generalized variable separation method, are used to solve the ordinary differential equation and abundant exact solutions of the GBL equation are got. Finally, we extend these exact solutions by discrete symmetries, and give three-dimensional graphs of partial exact solutions. In addition, we construct the nonlocally related PDE systems, which contains the potential systems from the conservation laws and an inverse system from a Lie point symmetry of the GBL equation. These findings reveal the dynamical behavior behind the GBL equation and broaden the range of nonlinear water wave model solutions.
期刊介绍:
Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed:
-Atomic, molecular and optical physics-
Plasma physics-
Condensed matter physics-
Mathematical physics-
Astrophysics-
High energy physics-
Nuclear physics-
Nonlinear physics.
The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.