Semi-prorepresentability of formal moduli problems and equivariant structures

Pub Date : 2024-09-18 DOI:10.4310/hha.2024.v26.n2.a5
An-Khuong Doan
{"title":"Semi-prorepresentability of formal moduli problems and equivariant structures","authors":"An-Khuong Doan","doi":"10.4310/hha.2024.v26.n2.a5","DOIUrl":null,"url":null,"abstract":"We generalize the notion of semi-universality in the classical deformation problems to the context of derived deformation theories. A criterion for a formal moduli problem to be semiprorepresentable is produced. This can be seen as an analogue of Schlessinger’s conditions for a functor of Artinian rings to have a semi-universal element. We also give a sufficient condition for a semi-prorepresentable formal moduli problem to admit a $G$ equivariant structure in a sense specified below, where $G$ is a linearly reductive group. Finally, by making use of these criteria, we derive many classical results including the existence of ($G$-equivariant) formal semi-universal deformations of algebraic schemes and that of complex compact manifolds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n2.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize the notion of semi-universality in the classical deformation problems to the context of derived deformation theories. A criterion for a formal moduli problem to be semiprorepresentable is produced. This can be seen as an analogue of Schlessinger’s conditions for a functor of Artinian rings to have a semi-universal element. We also give a sufficient condition for a semi-prorepresentable formal moduli problem to admit a $G$ equivariant structure in a sense specified below, where $G$ is a linearly reductive group. Finally, by making use of these criteria, we derive many classical results including the existence of ($G$-equivariant) formal semi-universal deformations of algebraic schemes and that of complex compact manifolds.
分享
查看原文
形式模问题的半可表示性与等价结构
我们将经典变形问题中的半普遍性概念推广到派生变形理论中。我们提出了形式模问题的半普遍性标准。这可以看作是施莱辛格关于阿蒂尼环的函子具有半普遍性元素的条件。我们还给出了一个半可表示形式模问题的充分条件,即在下文规定的意义上承认$G$等变结构,其中$G$是线性还原群。最后,利用这些标准,我们推导出了许多经典结果,包括代数方案的($G$等变)形式半泛函变形的存在,以及复杂紧凑流形的形式半泛函变形的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信