Impact of current uncertainties in the 12C+12C nuclear reaction rate on intermediate-mass stars and massive white dwarfs

Francisco C. De Gerónimo, Marcelo M. Miller Bertolami, Tiara Battich, Xiaodong Tang, Márcio Catelan, Alejandro H. Córsico, Yunjun Li, Xiao Fang, Leandro G. Althaus
{"title":"Impact of current uncertainties in the 12C+12C nuclear reaction rate on intermediate-mass stars and massive white dwarfs","authors":"Francisco C. De Gerónimo, Marcelo M. Miller Bertolami, Tiara Battich, Xiaodong Tang, Márcio Catelan, Alejandro H. Córsico, Yunjun Li, Xiao Fang, Leandro G. Althaus","doi":"arxiv-2409.10793","DOIUrl":null,"url":null,"abstract":"Recent determinations of the total rate of the 12C+12C nuclear reaction show\nnon-negligible differences with the reference reaction rate commonly used in\nprevious stellar simulations. In addition, the current uncertainties in\ndetermining each exit channel constitute one of the main uncertainties in\nshaping the inner structure of super asymptotic giant branch stars that could\nhave a measurable impact on the properties of pulsating ultra-massive white\ndwarfs (WDs). We explore how new determinations of the nuclear reaction rate\nand its branching ratios affect the evolution of WD progenitors. We show that\nthe current uncertainties in the branching ratios constitute the main\nuncertainty factor in determining the inner composition of ultra-massive WDs\nand their progenitors. We found that the use of extreme branching ratios leads\nto differences in the central abundances of 20Ne of at most 17%, which are\ntranslated into differences of at most 1.3 and 0.8% in the cooling times and\nsize of the crystallized core. However, the impact on the pulsation properties\nis small, less than 1 s for the asymptotic period spacing. We found that the\ncarbon burns partially in the interior of ultra-massive WD progenitors within a\nparticular range of masses, leaving a hybrid CONe-core composition in their\ncores. The evolution of these new kinds of predicted objects differs\nsubstantially from the evolution of objects with pure CO cores. Differences in\nthe size of the crystallized core and cooling times of up to 15 and 6%,\nrespectively leading to distinct patterns in the period spacing distribution.","PeriodicalId":501068,"journal":{"name":"arXiv - PHYS - Solar and Stellar Astrophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Solar and Stellar Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent determinations of the total rate of the 12C+12C nuclear reaction show non-negligible differences with the reference reaction rate commonly used in previous stellar simulations. In addition, the current uncertainties in determining each exit channel constitute one of the main uncertainties in shaping the inner structure of super asymptotic giant branch stars that could have a measurable impact on the properties of pulsating ultra-massive white dwarfs (WDs). We explore how new determinations of the nuclear reaction rate and its branching ratios affect the evolution of WD progenitors. We show that the current uncertainties in the branching ratios constitute the main uncertainty factor in determining the inner composition of ultra-massive WDs and their progenitors. We found that the use of extreme branching ratios leads to differences in the central abundances of 20Ne of at most 17%, which are translated into differences of at most 1.3 and 0.8% in the cooling times and size of the crystallized core. However, the impact on the pulsation properties is small, less than 1 s for the asymptotic period spacing. We found that the carbon burns partially in the interior of ultra-massive WD progenitors within a particular range of masses, leaving a hybrid CONe-core composition in their cores. The evolution of these new kinds of predicted objects differs substantially from the evolution of objects with pure CO cores. Differences in the size of the crystallized core and cooling times of up to 15 and 6%, respectively leading to distinct patterns in the period spacing distribution.
12C+12C 核反应速率的当前不确定性对中等质量恒星和大质量白矮星的影响
最近对 12C+12C 核反应总速率的测定结果表明,它与以往恒星模拟中常用的参考反应速率之间的差异微乎其微。此外,目前确定每个出口通道的不确定性构成了塑造超渐近巨分支恒星内部结构的主要不确定性之一,可能会对脉动超大质量白矮星(WD)的性质产生可测量的影响。我们探讨了核反应率及其分支比的新测定如何影响 WD 原生星的演化。我们发现,目前支化比的不确定性是确定超大质量白矮星及其原生体内部组成的主要不确定性因素。我们发现,使用极端支化比会导致 20Ne 的中心丰度最多相差 17%,而这又会转化为冷却时间和结晶内核大小最多相差 1.3%和 0.8%。然而,这对脉动特性的影响很小,在渐近周期间隔下小于 1 秒。我们发现,在特定质量范围内的超大质量 WD 原生体内部,碳会部分燃烧,从而在其内核中留下混合的 CONe 核成分。这些新型预言天体的演化与纯 CO 内核天体的演化有很大不同。结晶内核的大小和冷却时间的差异分别高达15%和6%,这导致了周期间隔分布的不同模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信