Prototypical Prompting for Text-to-image Person Re-identification

Shuanglin Yan, Jun Liu, Neng Dong, Liyan Zhang, Jinhui Tang
{"title":"Prototypical Prompting for Text-to-image Person Re-identification","authors":"Shuanglin Yan, Jun Liu, Neng Dong, Liyan Zhang, Jinhui Tang","doi":"arxiv-2409.09427","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of Text-to-Image Person Re-identification\n(TIReID), which aims to find images of the same identity described by a text\nsentence from a pool of candidate images. Benefiting from Vision-Language\nPre-training, such as CLIP (Contrastive Language-Image Pretraining), the TIReID\ntechniques have achieved remarkable progress recently. However, most existing\nmethods only focus on instance-level matching and ignore identity-level\nmatching, which involves associating multiple images and texts belonging to the\nsame person. In this paper, we propose a novel prototypical prompting framework\n(Propot) designed to simultaneously model instance-level and identity-level\nmatching for TIReID. Our Propot transforms the identity-level matching problem\ninto a prototype learning problem, aiming to learn identity-enriched\nprototypes. Specifically, Propot works by 'initialize, adapt, enrich, then\naggregate'. We first use CLIP to generate high-quality initial prototypes.\nThen, we propose a domain-conditional prototypical prompting (DPP) module to\nadapt the prototypes to the TIReID task using task-related information.\nFurther, we propose an instance-conditional prototypical prompting (IPP) module\nto update prototypes conditioned on intra-modal and inter-modal instances to\nensure prototype diversity. Finally, we design an adaptive prototype\naggregation module to aggregate these prototypes, generating final\nidentity-enriched prototypes. With identity-enriched prototypes, we diffuse its\nrich identity information to instances through prototype-to-instance\ncontrastive loss to facilitate identity-level matching. Extensive experiments\nconducted on three benchmarks demonstrate the superiority of Propot compared to\nexisting TIReID methods.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the problem of Text-to-Image Person Re-identification (TIReID), which aims to find images of the same identity described by a text sentence from a pool of candidate images. Benefiting from Vision-Language Pre-training, such as CLIP (Contrastive Language-Image Pretraining), the TIReID techniques have achieved remarkable progress recently. However, most existing methods only focus on instance-level matching and ignore identity-level matching, which involves associating multiple images and texts belonging to the same person. In this paper, we propose a novel prototypical prompting framework (Propot) designed to simultaneously model instance-level and identity-level matching for TIReID. Our Propot transforms the identity-level matching problem into a prototype learning problem, aiming to learn identity-enriched prototypes. Specifically, Propot works by 'initialize, adapt, enrich, then aggregate'. We first use CLIP to generate high-quality initial prototypes. Then, we propose a domain-conditional prototypical prompting (DPP) module to adapt the prototypes to the TIReID task using task-related information. Further, we propose an instance-conditional prototypical prompting (IPP) module to update prototypes conditioned on intra-modal and inter-modal instances to ensure prototype diversity. Finally, we design an adaptive prototype aggregation module to aggregate these prototypes, generating final identity-enriched prototypes. With identity-enriched prototypes, we diffuse its rich identity information to instances through prototype-to-instance contrastive loss to facilitate identity-level matching. Extensive experiments conducted on three benchmarks demonstrate the superiority of Propot compared to existing TIReID methods.
文本到图像的人员再识别原型提示
本文研究的是文本到图像的人员再识别(TIReID)问题,其目的是从候选图像库中找到文本句子所描述的相同身份的图像。得益于视觉语言预训练(如 CLIP,Contrastive Language-Image Pretraining),TIReID 技术近来取得了显著进展。然而,现有的大多数方法只关注实例级匹配,而忽略了身份级匹配,这涉及到将属于同一个人的多个图像和文本联系起来。在本文中,我们提出了一个新颖的原型提示框架(Propot),旨在同时为 TIReID 的实例级匹配和身份级匹配建模。我们的 Propot 将身份级匹配问题转化为原型学习问题,旨在学习身份丰富的原型。具体来说,Propot 的工作原理是 "初始化、适应、丰富、然后聚合"。首先,我们使用 CLIP 生成高质量的初始原型;然后,我们提出了领域条件原型提示(DPP)模块,利用任务相关信息使原型适应 TIReID 任务;再者,我们提出了实例条件原型提示(IPP)模块,根据模态内和模态间的实例更新原型,以确保原型的多样性。最后,我们设计了一个自适应原型聚合模块来聚合这些原型,生成最终的身份丰富原型。有了身份丰富的原型,我们通过原型到实例的对比损失将其丰富的身份信息扩散到实例中,以促进身份级匹配。在三个基准测试中进行的大量实验证明,与现有的 TIReID 方法相比,Propot 更胜一筹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信