Contri(e)ve: Context + Retrieve for Scholarly Question Answering

Kanchan Shivashankar, Nadine Steinmetz
{"title":"Contri(e)ve: Context + Retrieve for Scholarly Question Answering","authors":"Kanchan Shivashankar, Nadine Steinmetz","doi":"arxiv-2409.09010","DOIUrl":null,"url":null,"abstract":"Scholarly communication is a rapid growing field containing a wealth of\nknowledge. However, due to its unstructured and document format, it is\nchallenging to extract useful information from them through conventional\ndocument retrieval methods. Scholarly knowledge graphs solve this problem, by\nrepresenting the documents in a semantic network, providing, hidden insights,\nsummaries and ease of accessibility through queries. Naturally, question\nanswering for scholarly graphs expands the accessibility to a wider audience.\nBut some of the knowledge in this domain is still presented as unstructured\ntext, thus requiring a hybrid solution for question answering systems. In this\npaper, we present a two step solution using open source Large Language\nModel(LLM): Llama3.1 for Scholarly-QALD dataset. Firstly, we extract the\ncontext pertaining to the question from different structured and unstructured\ndata sources: DBLP, SemOpenAlex knowledge graphs and Wikipedia text. Secondly,\nwe implement prompt engineering to improve the information retrieval\nperformance of the LLM. Our approach achieved an F1 score of 40% and also\nobserved some anomalous responses from the LLM, that are discussed in the final\npart of the paper.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scholarly communication is a rapid growing field containing a wealth of knowledge. However, due to its unstructured and document format, it is challenging to extract useful information from them through conventional document retrieval methods. Scholarly knowledge graphs solve this problem, by representing the documents in a semantic network, providing, hidden insights, summaries and ease of accessibility through queries. Naturally, question answering for scholarly graphs expands the accessibility to a wider audience. But some of the knowledge in this domain is still presented as unstructured text, thus requiring a hybrid solution for question answering systems. In this paper, we present a two step solution using open source Large Language Model(LLM): Llama3.1 for Scholarly-QALD dataset. Firstly, we extract the context pertaining to the question from different structured and unstructured data sources: DBLP, SemOpenAlex knowledge graphs and Wikipedia text. Secondly, we implement prompt engineering to improve the information retrieval performance of the LLM. Our approach achieved an F1 score of 40% and also observed some anomalous responses from the LLM, that are discussed in the final part of the paper.
贡献:学术问题解答的上下文+检索
学术交流是一个快速发展的领域,蕴含着丰富的知识。然而,由于其非结构化和文档格式,通过传统的文档检索方法从中提取有用信息是一项挑战。学术知识图谱解决了这一问题,它以语义网络的形式表示文档,提供隐藏的见解、摘要,并通过查询方便地获取。当然,学术知识图谱的问题解答可以让更多的人获得知识,但这一领域的部分知识仍以非结构化文本的形式呈现,因此需要问题解答系统的混合解决方案。在本文中,我们提出了一种使用开源大型语言模型(LLM)的两步解决方案:Llama3.1 用于 Scholarly-QALD 数据集。首先,我们从不同的结构化和非结构化数据源中提取与问题相关的上下文:DBLP、SemOpenAlex 知识图谱和维基百科文本。其次,我们实施了提示工程,以提高 LLM 的信息检索性能。我们的方法获得了 40% 的 F1 分数,同时还发现了 LLM 的一些异常响应,本文最后一部分将对此进行讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信