Positive co-degree thresholds for spanning structures

Anastasia Halfpap, Van Magnan
{"title":"Positive co-degree thresholds for spanning structures","authors":"Anastasia Halfpap, Van Magnan","doi":"arxiv-2409.09185","DOIUrl":null,"url":null,"abstract":"The \\textit{minimum positive co-degree} of a non-empty $r$-graph $H$, denoted\n$\\delta_{r-1}^+(H)$, is the largest integer $k$ such that if a set $S \\subset\nV(H)$ of size $r-1$ is contained in at least one $r$-edge of $H$, then $S$ is\ncontained in at least $k$ $r$-edges of $H$. Motivated by several recent papers\nwhich study minimum positive co-degree as a reasonable notion of minimum degree\nin $r$-graphs, we consider bounds of $\\delta_{r-1}^+(H)$ which will guarantee\nthe existence of various spanning subgraphs in $H$. We precisely determine the\nminimum positive co-degree threshold for Berge Hamiltonian cycles in\n$r$-graphs, and asymptotically determine the minimum positive co-degree\nthreshold for loose Hamiltonian cycles in $3$-graphs. For all $r$, we also\ndetermine up to an additive constant the minimum positive co-degree threshold\nfor perfect matchings.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The \textit{minimum positive co-degree} of a non-empty $r$-graph $H$, denoted $\delta_{r-1}^+(H)$, is the largest integer $k$ such that if a set $S \subset V(H)$ of size $r-1$ is contained in at least one $r$-edge of $H$, then $S$ is contained in at least $k$ $r$-edges of $H$. Motivated by several recent papers which study minimum positive co-degree as a reasonable notion of minimum degree in $r$-graphs, we consider bounds of $\delta_{r-1}^+(H)$ which will guarantee the existence of various spanning subgraphs in $H$. We precisely determine the minimum positive co-degree threshold for Berge Hamiltonian cycles in $r$-graphs, and asymptotically determine the minimum positive co-degree threshold for loose Hamiltonian cycles in $3$-graphs. For all $r$, we also determine up to an additive constant the minimum positive co-degree threshold for perfect matchings.
跨度结构的正同度阈值
非空 $r$ 图 $H$ 的最小正同度(表示为 $delta_{r-1}^+(H)$)是这样一个最大整数 $k$:如果大小为 $r-1$ 的集合 $S (子集 V(H)$)至少包含在 $H$ 的一个 $r$ 边中,那么 $S$ 至少包含在 $H$ 的 $k$ $r$ 边中。最近有几篇论文将最小正共度作为 $r$ 图中最小度的一个合理概念进行了研究,受这些论文的启发,我们考虑了 $\delta_{r-1}^+(H)$ 的边界,它将保证 $H$ 中各种跨子图的存在。我们精确地确定了$r$图中Berge哈密顿循环的最小正共度阈值,并渐进地确定了$3$图中松散哈密顿循环的最小正共度阈值。对于所有 $r$,我们还确定了完美匹配的最小正同度阈值,其最大值为一个加常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信