Embedding arbitrary edge-colorings of hypergraphs into regular colorings

Xiaomiao Wang, Tao Feng, Shixin Wang
{"title":"Embedding arbitrary edge-colorings of hypergraphs into regular colorings","authors":"Xiaomiao Wang, Tao Feng, Shixin Wang","doi":"arxiv-2409.10950","DOIUrl":null,"url":null,"abstract":"For $\\textbf{r}=(r_1,\\ldots,r_k)$, an $\\textbf{r}$-factorization of the\ncomplete $\\lambda$-fold $h$-uniform $n$-vertex hypergraph $\\lambda K_n^h$ is a\npartition of the edges of $\\lambda K_n^h$ into $F_1,\\ldots, F_k$ such that\n$F_j$ is $r_j$-regular and spanning for $1\\leq j\\leq k$. This paper shows that\nfor $n>\\frac{m-1}{1-2^{\\frac{1}{1-h}}}+h-1$, a partial\n$\\textbf{r}$-factorization of $\\lambda K_m^h$ can be extended to an\n$\\textbf{r}$-factorization of $\\lambda K_n^h$ if and only if the obvious\nnecessary conditions are satisfied.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For $\textbf{r}=(r_1,\ldots,r_k)$, an $\textbf{r}$-factorization of the complete $\lambda$-fold $h$-uniform $n$-vertex hypergraph $\lambda K_n^h$ is a partition of the edges of $\lambda K_n^h$ into $F_1,\ldots, F_k$ such that $F_j$ is $r_j$-regular and spanning for $1\leq j\leq k$. This paper shows that for $n>\frac{m-1}{1-2^{\frac{1}{1-h}}}+h-1$, a partial $\textbf{r}$-factorization of $\lambda K_m^h$ can be extended to an $\textbf{r}$-factorization of $\lambda K_n^h$ if and only if the obvious necessary conditions are satisfied.
将超图的任意边着色嵌入规则着色中
对于 $textbf{r}=(r_1,\ldots,r_k)$,完整 $\lambda$ 折叠 $h$-uniform $n$-vertex 超图 $\lambda K_n^h$ 的 $textbf{r}$ 因式分解是将 $\lambda K_n^h$ 的边分割成 $F_1、\ldots, F_k$,使得$F_j$对于$1\leq j\leq k$来说是$r_j$-regular和spanning。本文表明,对于 $n>frac{m-1}{1-2^{\frac{1}{1-h}}+h-1$,当且仅当满足显而易见的必要条件时,$\lambda K_m^h$ 的部分$textbf{r}$因子化可以扩展为$\lambda K_n^h$ 的$textbf{r}$因子化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信