Positive solutions for nonlocal differential equations with concave and convex coefficients

IF 0.8 3区 数学 Q2 MATHEMATICS
Qingcong Song, Xinan Hao
{"title":"Positive solutions for nonlocal differential equations with concave and convex coefficients","authors":"Qingcong Song, Xinan Hao","doi":"10.1007/s11117-024-01086-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the positive solutions for nonlocal differential equations with concave and convex coefficients: </p><span>$$\\begin{aligned} -A\\left( \\int ^1_0 (u^p(s)+u^q(s))ds\\right) u''(t)=f(t,u(t)),\\quad t\\in (0,1), \\end{aligned}$$</span><p>where <span>\\(0&lt;p&lt;1\\le q.\\)</span> Using the fixed point index theory and fixed point theorems on cones, existence and multiplicity results are obtained, when the nonlinear term <i>f</i>(<i>t</i>, <i>x</i>) is continuous, has a singularity at <span>\\(x=0\\)</span>, changes sign, respectively.</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":"3 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-024-01086-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the positive solutions for nonlocal differential equations with concave and convex coefficients:

$$\begin{aligned} -A\left( \int ^1_0 (u^p(s)+u^q(s))ds\right) u''(t)=f(t,u(t)),\quad t\in (0,1), \end{aligned}$$

where \(0<p<1\le q.\) Using the fixed point index theory and fixed point theorems on cones, existence and multiplicity results are obtained, when the nonlinear term f(tx) is continuous, has a singularity at \(x=0\), changes sign, respectively.

具有凹凸系数的非局部微分方程的正解
本文研究了具有凹凸系数的非局部微分方程的正解:$$\begin{aligned} -A\left( \int ^1_0 (u^p(s)+u^q(s))ds\right) u''(t)=f(t,u(t)),\quad t\in (0,1), \end{aligned}$$ 其中 \(0<p<1\le q.\) 当非线性项f(t, x)是连续的、在\(x=0\)处有奇点、符号改变时,利用锥体上的定点索引理论和定点定理,分别得到了存在性和多重性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Positivity
Positivity 数学-数学
CiteScore
1.80
自引率
10.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信