Decision problems on geometric tilings

Benjamin Hellouin de MenibusGALaC, Victor LutfallaI2M, Pascal Vanier
{"title":"Decision problems on geometric tilings","authors":"Benjamin Hellouin de MenibusGALaC, Victor LutfallaI2M, Pascal Vanier","doi":"arxiv-2409.11739","DOIUrl":null,"url":null,"abstract":"We study decision problems on geometric tilings. First, we study a variant of\nthe Domino problem where square tiles are replaced by geometric tiles of\narbitrary shape. We show that, under some weak assumptions, this variant is\nundecidable regardless of the shapes, extending previous results on rhombus\ntiles. This result holds even when the geometric tiling is forced to belong to\na fixed set.Second, we consider the problem of deciding whether a geometric\nsubshift has finite local complexity, which is a common assumption when\nstudying geometric tilings. We show that it is undecidable even in a simple\nsetting (square shapes with small modifications).","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study decision problems on geometric tilings. First, we study a variant of the Domino problem where square tiles are replaced by geometric tiles of arbitrary shape. We show that, under some weak assumptions, this variant is undecidable regardless of the shapes, extending previous results on rhombus tiles. This result holds even when the geometric tiling is forced to belong to a fixed set.Second, we consider the problem of deciding whether a geometric subshift has finite local complexity, which is a common assumption when studying geometric tilings. We show that it is undecidable even in a simple setting (square shapes with small modifications).
几何倾斜上的决策问题
我们研究几何瓦片上的决策问题。首先,我们研究了多米诺问题的一个变式,即用任意形状的几何瓦片替换正方形瓦片。我们证明,在一些较弱的假设条件下,无论形状如何,这个变体都是不可解的,从而扩展了之前关于菱形瓦的结果。其次,我们考虑了决定几何子变换是否具有有限局部复杂性的问题,这是研究几何子变换时的一个常见假设。我们证明,即使是在简单集合中(有小修改的正方形),这个问题也是不可判定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信