Reconfiguration of labeled matchings in triangular grid graphs

Naonori Kakimura, Yuta Mishima
{"title":"Reconfiguration of labeled matchings in triangular grid graphs","authors":"Naonori Kakimura, Yuta Mishima","doi":"arxiv-2409.11723","DOIUrl":null,"url":null,"abstract":"This paper introduces a new reconfiguration problem of matchings in a\ntriangular grid graph. In this problem, we are given a nearly perfect matching\nin which each matching edge is labeled, and aim to transform it to a target\nmatching by sliding edges one by one. This problem is motivated to investigate\nthe solvability of a sliding-block puzzle called ``Gourds'' on a hexagonal grid\nboard, introduced by Hamersma et al. [ISAAC 2020]. The main contribution of\nthis paper is to prove that, if a triangular grid graph is factor-critical and\nhas a vertex of degree $6$, then any two matchings can be reconfigured to each\nother. Moreover, for a triangular grid graph (which may not have a degree-6\nvertex), we present another sufficient condition using the local connectivity.\nBoth of our results provide broad sufficient conditions for the solvability of\nthe Gourds puzzle on a hexagonal grid board with holes, where Hamersma et al.\nleft it as an open question.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a new reconfiguration problem of matchings in a triangular grid graph. In this problem, we are given a nearly perfect matching in which each matching edge is labeled, and aim to transform it to a target matching by sliding edges one by one. This problem is motivated to investigate the solvability of a sliding-block puzzle called ``Gourds'' on a hexagonal grid board, introduced by Hamersma et al. [ISAAC 2020]. The main contribution of this paper is to prove that, if a triangular grid graph is factor-critical and has a vertex of degree $6$, then any two matchings can be reconfigured to each other. Moreover, for a triangular grid graph (which may not have a degree-6 vertex), we present another sufficient condition using the local connectivity. Both of our results provide broad sufficient conditions for the solvability of the Gourds puzzle on a hexagonal grid board with holes, where Hamersma et al. left it as an open question.
三角网格图中标签匹配的重新配置
本文提出了一个新的三角形网格图匹配重构问题。在这个问题中,我们给定了一个近乎完美的匹配,其中每条匹配边都有标签,我们的目标是通过逐条滑动边将其转换为目标匹配。这个问题的动机是研究 Hamersma 等人[ISAAC 2020]提出的六边形网格板上名为 "葫芦 "的滑动块谜题的可解性。本文的主要贡献在于证明了如果一个三角形网格图是因子临界图,并且有一个度为$6$的顶点,那么任意两个匹配都可以互相重组。此外,对于三角形网格图(可能没有阶数为 6 的顶点),我们利用局部连通性提出了另一个充分条件。我们的这两个结果都为带孔六边形网格板上的葫芦谜题的可解性提供了广泛的充分条件,而 Hamersma 等人将其作为一个未决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信