{"title":"Role of copper during microglial inflammation","authors":"Laura Craciun, Sandra E. Muroy, Kaoru Saijo","doi":"10.1101/2024.09.18.613750","DOIUrl":null,"url":null,"abstract":"Copper plays crucial roles in various physiological functions of the nervous and immune systems. Dysregulation of copper homeostasis is linked to several diseases, including neurodegenerative diseases. Since dysfunctional microglial immunity can contribute to such diseases, we investigated the role of copper in microglial immunity. We found that both increased and decreased copper levels induced by chemical treatments suppresses lipopolysaccharide (LPS)-mediated inflammation in microglial cells, as determined by RT-qPCR analysis. RNA sequencing (RNA-seq) analysis confirmed that increased copper level reduces the inflammatory response to LPS; however, it also showed that decreased copper level affects genes involved in cell proliferation, transcription, and autophagosome regulation. These findings suggest that copper is vital for maintaining normal immune function in microglia, and both copper excess and deficiency can disrupt microglial immunity.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.18.613750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Copper plays crucial roles in various physiological functions of the nervous and immune systems. Dysregulation of copper homeostasis is linked to several diseases, including neurodegenerative diseases. Since dysfunctional microglial immunity can contribute to such diseases, we investigated the role of copper in microglial immunity. We found that both increased and decreased copper levels induced by chemical treatments suppresses lipopolysaccharide (LPS)-mediated inflammation in microglial cells, as determined by RT-qPCR analysis. RNA sequencing (RNA-seq) analysis confirmed that increased copper level reduces the inflammatory response to LPS; however, it also showed that decreased copper level affects genes involved in cell proliferation, transcription, and autophagosome regulation. These findings suggest that copper is vital for maintaining normal immune function in microglia, and both copper excess and deficiency can disrupt microglial immunity.