An Innovative Biphasic Reaction System for Highly Selective Benzene Hydroxylation based on Photocatalytic Polymer Composites

IF 3 4区 化学 Q3 CHEMISTRY, PHYSICAL
Antonietta Mancuso, Rosaria Anna Picca, Margherita Izzi, Cinzia Di Franco, Olga Sacco, Vincenzo Vaiano, Vincenzo Venditto
{"title":"An Innovative Biphasic Reaction System for Highly Selective Benzene Hydroxylation based on Photocatalytic Polymer Composites","authors":"Antonietta Mancuso,&nbsp;Rosaria Anna Picca,&nbsp;Margherita Izzi,&nbsp;Cinzia Di Franco,&nbsp;Olga Sacco,&nbsp;Vincenzo Vaiano,&nbsp;Vincenzo Venditto","doi":"10.1002/cptc.202400203","DOIUrl":null,"url":null,"abstract":"<p>The hydroxylation of benzene to phenol in presence of hydrogen peroxide was performed using a new biphasic system consisting of a solid phase, a photocatalytically active monolithic polymer composite, immersed in an aqueous phase in which H<sub>2</sub>O<sub>2</sub> is dissolved. In detail, ZnO photocatalytic particles were embedded into the hydrophobic syndiotactic polystyrene (sPS) polymer. Zinc oxide nanostructures (ZnO NSs) were synthesized by an electrochemical procedure. The surface morphology and structure of ZnO nanoparticles and ZnO-sPS monolithic aerogel composite (ZnO/sPS) were investigated by scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy analysis. Photocatalytic results evidenced that, under UV irradiation, both ZnO NSs and biphasic system water-photocatalytic composites had a high benzene oxidative property but with very low phenol yield (&lt;2 %) at pH=7. To enhance the phenol selective formation, the pH of the aqueous solution surrounding the photocatalytic polymer composite was modified. A phenol yield of about 94 % and benzene conversion higher than 99 % was obtained in alkaline conditions (pH=11).</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"8 12","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cptc.202400203","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The hydroxylation of benzene to phenol in presence of hydrogen peroxide was performed using a new biphasic system consisting of a solid phase, a photocatalytically active monolithic polymer composite, immersed in an aqueous phase in which H2O2 is dissolved. In detail, ZnO photocatalytic particles were embedded into the hydrophobic syndiotactic polystyrene (sPS) polymer. Zinc oxide nanostructures (ZnO NSs) were synthesized by an electrochemical procedure. The surface morphology and structure of ZnO nanoparticles and ZnO-sPS monolithic aerogel composite (ZnO/sPS) were investigated by scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy analysis. Photocatalytic results evidenced that, under UV irradiation, both ZnO NSs and biphasic system water-photocatalytic composites had a high benzene oxidative property but with very low phenol yield (<2 %) at pH=7. To enhance the phenol selective formation, the pH of the aqueous solution surrounding the photocatalytic polymer composite was modified. A phenol yield of about 94 % and benzene conversion higher than 99 % was obtained in alkaline conditions (pH=11).

Abstract Image

基于光催化聚合物复合材料的高选择性苯羟化创新双相反应系统
使用一种新型双相系统在过氧化氢存在下将苯羟基化为苯酚,该系统由固相(一种具有光催化活性的整体聚合物复合材料)和水相(其中溶解有 H2O2)组成。具体来说,氧化锌光催化颗粒被嵌入疏水性辛二聚苯乙烯(sPS)聚合物中。氧化锌纳米结构(ZnO NSs)是通过电化学方法合成的。通过扫描电子显微镜、X 射线衍射和 X 射线光电子能谱分析研究了氧化锌纳米颗粒和氧化锌-聚苯乙烯整体气凝胶复合材料(ZnO/sPS)的表面形貌和结构。光催化结果表明,在紫外线照射下,ZnO NSs 和双相体系水光催化复合材料都具有较高的苯氧化性,但在 pH=7 时,苯酚产率非常低(2%)。为了提高苯酚的选择性生成,对光催化聚合物复合材料周围水溶液的 pH 值进行了调整。在碱性条件下(pH=11),苯酚产量约为 94%,苯转化率高于 99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemPhotoChem
ChemPhotoChem Chemistry-Physical and Theoretical Chemistry
CiteScore
5.80
自引率
5.40%
发文量
165
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信