{"title":"BIRATIONAL GEOMETRY OF SEXTIC DOUBLE SOLIDS WITH A COMPOUND SINGULARITY","authors":"ERIK PAEMURRU","doi":"10.1017/nmj.2024.17","DOIUrl":null,"url":null,"abstract":"Sextic double solids, double covers of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000175_inline2.png\"/> <jats:tex-math> $\\mathbb P^3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> branched along a sextic surface, are the lowest degree Gorenstein terminal Fano 3-folds, hence are expected to behave very rigidly in terms of birational geometry. Smooth sextic double solids, and those which are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000175_inline3.png\"/> <jats:tex-math> $\\mathbb Q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-factorial with ordinary double points, are known to be birationally rigid. In this paper, we study sextic double solids with an isolated compound <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000175_inline4.png\"/> <jats:tex-math> $A_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> singularity. We prove a sharp bound <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000175_inline5.png\"/> <jats:tex-math> $n \\leq 8$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, describe models for each <jats:italic>n</jats:italic> explicitly, and prove that sextic double solids with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000175_inline6.png\"/> <jats:tex-math> $n> 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are birationally nonrigid.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"207 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2024.17","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Sextic double solids, double covers of $\mathbb P^3$ branched along a sextic surface, are the lowest degree Gorenstein terminal Fano 3-folds, hence are expected to behave very rigidly in terms of birational geometry. Smooth sextic double solids, and those which are $\mathbb Q$ -factorial with ordinary double points, are known to be birationally rigid. In this paper, we study sextic double solids with an isolated compound $A_n$ singularity. We prove a sharp bound $n \leq 8$ , describe models for each n explicitly, and prove that sextic double solids with $n> 3$ are birationally nonrigid.
期刊介绍:
The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.