"The Data Says Otherwise"-Towards Automated Fact-checking and Communication of Data Claims

Yu Fu, Shunan Guo, Jane Hoffswell, Victor S. Bursztyn, Ryan Rossi, John Stasko
{"title":"\"The Data Says Otherwise\"-Towards Automated Fact-checking and Communication of Data Claims","authors":"Yu Fu, Shunan Guo, Jane Hoffswell, Victor S. Bursztyn, Ryan Rossi, John Stasko","doi":"arxiv-2409.10713","DOIUrl":null,"url":null,"abstract":"Fact-checking data claims requires data evidence retrieval and analysis,\nwhich can become tedious and intractable when done manually. This work presents\nAletheia, an automated fact-checking prototype designed to facilitate data\nclaims verification and enhance data evidence communication. For verification,\nwe utilize a pre-trained LLM to parse the semantics for evidence retrieval. To\neffectively communicate the data evidence, we design representations in two\nforms: data tables and visualizations, tailored to various data fact types.\nAdditionally, we design interactions that showcase a real-world application of\nthese techniques. We evaluate the performance of two core NLP tasks with a\ncurated dataset comprising 400 data claims and compare the two representation\nforms regarding viewers' assessment time, confidence, and preference via a user\nstudy with 20 participants. The evaluation offers insights into the feasibility\nand bottlenecks of using LLMs for data fact-checking tasks, potential\nadvantages and disadvantages of using visualizations over data tables, and\ndesign recommendations for presenting data evidence.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fact-checking data claims requires data evidence retrieval and analysis, which can become tedious and intractable when done manually. This work presents Aletheia, an automated fact-checking prototype designed to facilitate data claims verification and enhance data evidence communication. For verification, we utilize a pre-trained LLM to parse the semantics for evidence retrieval. To effectively communicate the data evidence, we design representations in two forms: data tables and visualizations, tailored to various data fact types. Additionally, we design interactions that showcase a real-world application of these techniques. We evaluate the performance of two core NLP tasks with a curated dataset comprising 400 data claims and compare the two representation forms regarding viewers' assessment time, confidence, and preference via a user study with 20 participants. The evaluation offers insights into the feasibility and bottlenecks of using LLMs for data fact-checking tasks, potential advantages and disadvantages of using visualizations over data tables, and design recommendations for presenting data evidence.
"数据并非如此"--实现自动事实核查和数据声明交流
对数据索赔进行事实核查需要进行数据证据检索和分析,而人工操作可能会变得乏味和棘手。这项工作提出了一个自动事实核查原型--Aletheia,旨在促进数据索赔核查并加强数据证据交流。在验证方面,我们利用预先训练好的 LLM 来解析语义,以便进行证据检索。为了有效地交流数据证据,我们设计了两种形式的表示方法:数据表和可视化,适合各种数据事实类型。我们通过一项有 20 名参与者参加的用户研究,评估了两个核心 NLP 任务的性能,并比较了这两种表示形式对查看者的评估时间、信心和偏好的影响。评估深入揭示了在数据事实检查任务中使用 LLM 的可行性和瓶颈、使用可视化而非数据表格的潜在优势和劣势,以及展示数据证据的设计建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信