Deep Learning-based Codes for Wiretap Fading Channels

Daniel Seifert, Onur Günlü, Rafael F. Schaefer
{"title":"Deep Learning-based Codes for Wiretap Fading Channels","authors":"Daniel Seifert, Onur Günlü, Rafael F. Schaefer","doi":"arxiv-2409.08786","DOIUrl":null,"url":null,"abstract":"The wiretap channel is a well-studied problem in the physical layer security\n(PLS) literature. Although it is proven that the decoding error probability and\ninformation leakage can be made arbitrarily small in the asymptotic regime,\nfurther research on finite-blocklength codes is required on the path towards\npractical, secure communications systems. This work provides the first\nexperimental characterization of a deep learning-based, finite-blocklength code\nconstruction for multi-tap fading wiretap channels without channel state\ninformation (CSI). In addition to the evaluation of the average probability of\nerror and information leakage, we illustrate the influence of (i) the number of\nfading taps, (ii) differing variances of the fading coefficients and (iii) the\nseed selection for the hash function-based security layer.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The wiretap channel is a well-studied problem in the physical layer security (PLS) literature. Although it is proven that the decoding error probability and information leakage can be made arbitrarily small in the asymptotic regime, further research on finite-blocklength codes is required on the path towards practical, secure communications systems. This work provides the first experimental characterization of a deep learning-based, finite-blocklength code construction for multi-tap fading wiretap channels without channel state information (CSI). In addition to the evaluation of the average probability of error and information leakage, we illustrate the influence of (i) the number of fading taps, (ii) differing variances of the fading coefficients and (iii) the seed selection for the hash function-based security layer.
基于深度学习的窃听消隐信道编码
窃听信道是物理层安全(PLS)文献中研究得很透彻的一个问题。虽然事实证明,在渐近机制下,解码错误概率和信息泄漏可以变得任意小,但在通往实用安全通信系统的道路上,还需要进一步研究有限块长编码。本研究首次针对无信道状态信息(CSI)的多抽头衰落有线抽头信道,对基于深度学习的有限块长编码构造进行了实验描述。除了评估错误和信息泄漏的平均概率外,我们还说明了以下因素的影响:(i) 衰减抽头的数量;(ii) 衰减系数的不同方差;(iii) 基于哈希函数的安全层的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信