Experimental Method for Measuring Cohesion of Regolith via Electrostatic Lofting

IF 3.8 Q2 ASTRONOMY & ASTROPHYSICS
Charles T. Pett and Christine M. Hartzell
{"title":"Experimental Method for Measuring Cohesion of Regolith via Electrostatic Lofting","authors":"Charles T. Pett and Christine M. Hartzell","doi":"10.3847/psj/ad6c36","DOIUrl":null,"url":null,"abstract":"The hypothesized electrostatic lofting of individual regolith grains on the Moon and asteroids has been investigated extensively in laboratory studies. Cohesion may dominate how regolith behaves on these small, airless bodies, yet the magnitude of this force remains uncertain. We induce the electrostatic detachment of dust as a mechanism to break cohesive bonds between individual zirconia-silica microspheres in order to measure the interparticle cohesive force between them, likely dominated by capillary bridges. A high-speed camera imaged centroid positions of the lofted microspheres over time. Using the centroids from the initial detachment, we numerically calculated initial accelerations to solve for the cohesion that had been restraining the microspheres. Unexpectedly, the electrostatic lofting of clumps of particles was observed and experimental results showed that clumps were a nonnegligible portion of the lofted object population.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"2 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Planetary Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/psj/ad6c36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The hypothesized electrostatic lofting of individual regolith grains on the Moon and asteroids has been investigated extensively in laboratory studies. Cohesion may dominate how regolith behaves on these small, airless bodies, yet the magnitude of this force remains uncertain. We induce the electrostatic detachment of dust as a mechanism to break cohesive bonds between individual zirconia-silica microspheres in order to measure the interparticle cohesive force between them, likely dominated by capillary bridges. A high-speed camera imaged centroid positions of the lofted microspheres over time. Using the centroids from the initial detachment, we numerically calculated initial accelerations to solve for the cohesion that had been restraining the microspheres. Unexpectedly, the electrostatic lofting of clumps of particles was observed and experimental results showed that clumps were a nonnegligible portion of the lofted object population.
通过静电悬浮测量岩石凝聚力的实验方法
在实验室研究中,对月球和小行星上单个碎石颗粒的静电悬浮假设进行了广泛调查。凝聚力可能主导着这些小型无空气天体上的碎石行为,但这种力量的大小仍不确定。我们诱导尘埃的静电脱离,以此作为打破单个氧化锆-二氧化硅微球之间内聚键的机制,从而测量它们之间可能由毛细管桥主导的粒子间内聚力。高速照相机对悬浮微球随时间变化的中心点位置进行成像。利用初始脱离时的中心点,我们通过数值计算初始加速度来求解束缚微球的内聚力。出乎意料的是,我们观察到了颗粒团块的静电悬浮现象,实验结果表明,颗粒团块在悬浮物体群中占有不可忽视的比例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Planetary Science Journal
The Planetary Science Journal Earth and Planetary Sciences-Geophysics
CiteScore
5.20
自引率
0.00%
发文量
249
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信