Representing Born effective charges with equivariant graph convolutional neural networks

Alex Kutana, Koji Shimizu, Satoshi Watanabe, Ryoji Asahi
{"title":"Representing Born effective charges with equivariant graph convolutional neural networks","authors":"Alex Kutana, Koji Shimizu, Satoshi Watanabe, Ryoji Asahi","doi":"arxiv-2409.08940","DOIUrl":null,"url":null,"abstract":"Graph convolutional neural networks have been instrumental in machine\nlearning of material properties. When representing tensorial properties,\nweights and descriptors of a physics-informed network must obey certain\ntransformation rules to ensure the independence of the property on the choice\nof the reference frame. Here we explicitly encode such properties using an\nequivariant graph convolutional neural network. The network respects rotational\nsymmetries of the crystal throughout by using equivariant weights and\ndescriptors and provides a tensorial output of the target value. Applications\nto tensors of atomic Born effective charges in diverse materials including\nperovskite oxides, Li3PO4, and ZrO2, are demonstrated, and good performance and\ngeneralization ability is obtained.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graph convolutional neural networks have been instrumental in machine learning of material properties. When representing tensorial properties, weights and descriptors of a physics-informed network must obey certain transformation rules to ensure the independence of the property on the choice of the reference frame. Here we explicitly encode such properties using an equivariant graph convolutional neural network. The network respects rotational symmetries of the crystal throughout by using equivariant weights and descriptors and provides a tensorial output of the target value. Applications to tensors of atomic Born effective charges in diverse materials including perovskite oxides, Li3PO4, and ZrO2, are demonstrated, and good performance and generalization ability is obtained.
用等变图卷积神经网络表示玻恩有效电荷
图卷积神经网络在材料特性的机器学习中发挥了重要作用。在表示张量属性时,物理信息网络的权重和描述符必须遵守一定的变换规则,以确保属性与参考框架的选择无关。在这里,我们使用一个后向图卷积神经网络来明确编码这些属性。通过使用等变权重和描述符,该网络自始至终尊重晶体的旋转对称性,并提供目标值的张量输出。实验证明了该网络在不同材料(包括perovskite氧化物、Li3PO4和ZrO2)中原子Born有效电荷张量的应用,并获得了良好的性能和泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信