Optimal Classification-based Anomaly Detection with Neural Networks: Theory and Practice

Tian-Yi Zhou, Matthew Lau, Jizhou Chen, Wenke Lee, Xiaoming Huo
{"title":"Optimal Classification-based Anomaly Detection with Neural Networks: Theory and Practice","authors":"Tian-Yi Zhou, Matthew Lau, Jizhou Chen, Wenke Lee, Xiaoming Huo","doi":"arxiv-2409.08521","DOIUrl":null,"url":null,"abstract":"Anomaly detection is an important problem in many application areas, such as\nnetwork security. Many deep learning methods for unsupervised anomaly detection\nproduce good empirical performance but lack theoretical guarantees. By casting\nanomaly detection into a binary classification problem, we establish\nnon-asymptotic upper bounds and a convergence rate on the excess risk on\nrectified linear unit (ReLU) neural networks trained on synthetic anomalies.\nOur convergence rate on the excess risk matches the minimax optimal rate in the\nliterature. Furthermore, we provide lower and upper bounds on the number of\nsynthetic anomalies that can attain this optimality. For practical\nimplementation, we relax some conditions to improve the search for the\nempirical risk minimizer, which leads to competitive performance to other\nclassification-based methods for anomaly detection. Overall, our work provides\nthe first theoretical guarantees of unsupervised neural network-based anomaly\ndetectors and empirical insights on how to design them well.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Anomaly detection is an important problem in many application areas, such as network security. Many deep learning methods for unsupervised anomaly detection produce good empirical performance but lack theoretical guarantees. By casting anomaly detection into a binary classification problem, we establish non-asymptotic upper bounds and a convergence rate on the excess risk on rectified linear unit (ReLU) neural networks trained on synthetic anomalies. Our convergence rate on the excess risk matches the minimax optimal rate in the literature. Furthermore, we provide lower and upper bounds on the number of synthetic anomalies that can attain this optimality. For practical implementation, we relax some conditions to improve the search for the empirical risk minimizer, which leads to competitive performance to other classification-based methods for anomaly detection. Overall, our work provides the first theoretical guarantees of unsupervised neural network-based anomaly detectors and empirical insights on how to design them well.
基于分类的神经网络优化异常检测:理论与实践
异常检测是网络安全等许多应用领域的重要问题。许多用于无监督异常检测的深度学习方法产生了良好的经验性能,但缺乏理论保证。通过将异常检测转化为二元分类问题,我们建立了非渐近上界以及在合成异常上训练的修正线性单元(ReLU)神经网络的超额风险收敛率。此外,我们还提供了能达到这一最优值的合成异常数量的下限和上限。在实际应用中,我们放宽了一些条件,以改进对经验风险最小值的搜索,从而使异常检测的性能与其他基于分类的方法相比更具竞争力。总之,我们的工作首次为基于无监督神经网络的异常检测提供了理论保证,并为如何设计好异常检测提供了经验启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信