Geometrically constrained sine-Gordon field: BPS solitons and their collisions

E. da Hora, L. Pereira, C. dos Santos, F. C. Simas
{"title":"Geometrically constrained sine-Gordon field: BPS solitons and their collisions","authors":"E. da Hora, L. Pereira, C. dos Santos, F. C. Simas","doi":"arxiv-2409.09767","DOIUrl":null,"url":null,"abstract":"We consider an enlarged $(1+1)$-dimensional model with two real scalar\nfields, $\\phi$ and $\\chi$ whose scalar potential $V(\\phi,\\chi)$ has a standard\n$\\chi^4$ sector and a sine-Gordon one for $\\phi$. These fields are coupled\nthrough a generalizing function $f(\\chi)$ that appears in the scalar potential\nand controls the nontrivial dynamics of $\\phi$. We minimize the effective\nenergy via the implementation of the BPS technique. We then obtain the\nBogomol'nyi bound for the energy and the first-order equations whose solutions\nsaturate that bound. We solve these equations for a nontrivial $f(\\chi)$. As\nthe result, BPS kinks with internal structures emerge. They exhibit a two-kink\nprofile. i.e. an effect due to geometrical constrictions. We consider the\nlinear stability of these new configurations. In this sense, we study the\nexistence of internal modes that play an important role during the scattering\nprocess. We then investigate the kink-antikink collisions, and present the\nnumerical results for the most interesting cases. We also comment about their\nmost relevant features.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an enlarged $(1+1)$-dimensional model with two real scalar fields, $\phi$ and $\chi$ whose scalar potential $V(\phi,\chi)$ has a standard $\chi^4$ sector and a sine-Gordon one for $\phi$. These fields are coupled through a generalizing function $f(\chi)$ that appears in the scalar potential and controls the nontrivial dynamics of $\phi$. We minimize the effective energy via the implementation of the BPS technique. We then obtain the Bogomol'nyi bound for the energy and the first-order equations whose solutions saturate that bound. We solve these equations for a nontrivial $f(\chi)$. As the result, BPS kinks with internal structures emerge. They exhibit a two-kink profile. i.e. an effect due to geometrical constrictions. We consider the linear stability of these new configurations. In this sense, we study the existence of internal modes that play an important role during the scattering process. We then investigate the kink-antikink collisions, and present the numerical results for the most interesting cases. We also comment about their most relevant features.
几何约束正弦-戈登场:BPS 孤子及其碰撞
我们考虑了一个具有两个实数标量场--$\phi$和$\chi$--的扩大的$(1+1)$维模型,其标量势$V(\phi,\chi)$有一个标准的$\chi^4$扇区和一个用于$\phi$的正弦-戈登扇区。这些场通过一个广义函数$f(\chi)$耦合,该函数出现在标量势中并控制着$\phi$的非微观动力学。我们通过 BPS 技术使有效能最小化。然后,我们得到了能量的博戈莫尔尼约束和一阶方程,这些方程的解使该约束饱和。我们求解了这些方程,得到了一个非微观的 $f(\chi)$。结果,具有内部结构的BPS扭结出现了。它们呈现出双扭结轮廓,即由于几何约束而产生的效应。我们考虑这些新构型的线性稳定性。在这个意义上,我们研究了在散射过程中起重要作用的内部模式的存在。然后,我们研究了kink-antikink碰撞,并给出了最有趣情况下的数值结果。我们还对其最相关的特征进行了评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信