The Asymptotics of Wide Remedians

Philip T. Labo
{"title":"The Asymptotics of Wide Remedians","authors":"Philip T. Labo","doi":"arxiv-2409.09528","DOIUrl":null,"url":null,"abstract":"The remedian uses a $k\\times b$ matrix to approximate the median of $n\\leq\nb^{k}$ streaming input values by recursively replacing buffers of $b$ values\nwith their medians, thereby ignoring its $200(\\lceil b/2\\rceil / b)^{k}%$ most\nextreme inputs. Rousseeuw & Bassett (1990) and Chao & Lin (1993); Chen & Chen\n(2005) study the remedian's distribution as $k\\rightarrow\\infty$ and as\n$k,b\\rightarrow\\infty$. The remedian's breakdown point vanishes as\n$k\\rightarrow\\infty$, but approaches $(1/2)^{k}$ as $b\\rightarrow\\infty$. We\nstudy the remedian's robust-regime distribution as $b\\rightarrow\\infty$,\nderiving a normal distribution for standardized (mean, median, remedian,\nremedian rank) as $b\\rightarrow\\infty$, thereby illuminating the remedian's\naccuracy in approximating the sample median. We derive the asymptotic\nefficiency of the remedian relative to the mean and the median. Finally, we\ndiscuss the estimation of more than one quantile at once, proposing an\nasymptotic distribution for the random vector that results when we apply\nremedian estimation in parallel to the components of i.i.d. random vectors.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The remedian uses a $k\times b$ matrix to approximate the median of $n\leq b^{k}$ streaming input values by recursively replacing buffers of $b$ values with their medians, thereby ignoring its $200(\lceil b/2\rceil / b)^{k}%$ most extreme inputs. Rousseeuw & Bassett (1990) and Chao & Lin (1993); Chen & Chen (2005) study the remedian's distribution as $k\rightarrow\infty$ and as $k,b\rightarrow\infty$. The remedian's breakdown point vanishes as $k\rightarrow\infty$, but approaches $(1/2)^{k}$ as $b\rightarrow\infty$. We study the remedian's robust-regime distribution as $b\rightarrow\infty$, deriving a normal distribution for standardized (mean, median, remedian, remedian rank) as $b\rightarrow\infty$, thereby illuminating the remedian's accuracy in approximating the sample median. We derive the asymptotic efficiency of the remedian relative to the mean and the median. Finally, we discuss the estimation of more than one quantile at once, proposing an asymptotic distribution for the random vector that results when we apply remedian estimation in parallel to the components of i.i.d. random vectors.
宽补数的渐近性
remedian使用一个$k/times b$矩阵来近似$n\leqb^{k}$流输入值的中值,方法是递归地将$b$值的缓冲区替换为它们的中值,从而忽略其$200(\lceil b/2\rceil / b)^{k}%$最极端的输入。Rousseeuw & Bassett(1990)、Chao & Lin(1993)、Chen & Chen(2005)分别研究了 $k\rightarrow\infty$ 和 $k,b/rightarrow/infty$时的remedian分布。当 $k\rightarrow\infty$ 时,remedian 的崩溃点消失,但当 $b\rightarrow\infty$ 时,remedian 的崩溃点接近 $(1/2)^{k}$。我们以 $b\rightarrow\infty$ 的形式研究了remedian的稳健-时间分布,并以 $b\rightarrow\infty$的形式推导出标准化(均值、中位数、remedian、remedian rank)的正态分布,从而揭示了remedian在逼近样本中位数方面的准确性。我们推导出相对于均值和中位数的再中值的渐近效率。最后,我们讨论了同时估计多个量级的问题,提出了当我们对 i.i.d. 随机向量的分量并行应用remedian估计时所产生的随机向量的渐近分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信