Consistent complete independence test in high dimensions based on Chatterjee correlation coefficient

Liqi Xia, Ruiyuan Cao, Jiang Du, Jun Dai
{"title":"Consistent complete independence test in high dimensions based on Chatterjee correlation coefficient","authors":"Liqi Xia, Ruiyuan Cao, Jiang Du, Jun Dai","doi":"arxiv-2409.10315","DOIUrl":null,"url":null,"abstract":"In this article, we consider the complete independence test of\nhigh-dimensional data. Based on Chatterjee coefficient, we pioneer the\ndevelopment of quadratic test and extreme value test which possess good testing\nperformance for oscillatory data, and establish the corresponding large sample\nproperties under both null hypotheses and alternative hypotheses. In order to\novercome the shortcomings of quadratic statistic and extreme value statistic,\nwe propose a testing method termed as power enhancement test by adding a\nscreening statistic to the quadratic statistic. The proposed method do not\nreduce the testing power under dense alternative hypotheses, but can enhance\nthe power significantly under sparse alternative hypotheses. Three synthetic\ndata examples and two real data examples are further used to illustrate the\nperformance of our proposed methods.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we consider the complete independence test of high-dimensional data. Based on Chatterjee coefficient, we pioneer the development of quadratic test and extreme value test which possess good testing performance for oscillatory data, and establish the corresponding large sample properties under both null hypotheses and alternative hypotheses. In order to overcome the shortcomings of quadratic statistic and extreme value statistic, we propose a testing method termed as power enhancement test by adding a screening statistic to the quadratic statistic. The proposed method do not reduce the testing power under dense alternative hypotheses, but can enhance the power significantly under sparse alternative hypotheses. Three synthetic data examples and two real data examples are further used to illustrate the performance of our proposed methods.
基于 Chatterjee 相关系数的高维一致完全独立测试
本文考虑了高维数据的完全独立性检验。在 Chatterjee 系数的基础上,我们率先开发了对振荡数据具有良好检验性能的二次检验和极值检验,并在零假设和备择假设下建立了相应的大样本属性。为了克服二次统计量和极值统计量的缺点,我们提出了一种检验方法,即在二次统计量的基础上加入筛选统计量,称为功率增强检验。所提出的方法不会降低密集替代假设下的测试能力,但能显著增强稀疏替代假设下的测试能力。三个合成数据示例和两个真实数据示例进一步说明了我们提出的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信