Poisson and Gamma Model Marginalisation and Marginal Likelihood calculation using Moment-generating Functions

Siyang Li, David van Dyk, Maximilian Autenrieth
{"title":"Poisson and Gamma Model Marginalisation and Marginal Likelihood calculation using Moment-generating Functions","authors":"Siyang Li, David van Dyk, Maximilian Autenrieth","doi":"arxiv-2409.11167","DOIUrl":null,"url":null,"abstract":"We present a new analytical method to derive the likelihood function that has\nthe population of parameters marginalised out in Bayesian hierarchical models.\nThis method is also useful to find the marginal likelihoods in Bayesian models\nor in random-effect linear mixed models. The key to this method is to take\nhigh-order (sometimes fractional) derivatives of the prior moment-generating\nfunction if particular existence and differentiability conditions hold. In particular, this analytical method assumes that the likelihood is either\nPoisson or gamma. Under Poisson likelihoods, the observed Poisson count\ndetermines the order of the derivative. Under gamma likelihoods, the shape\nparameter, which is assumed to be known, determines the order of the fractional\nderivative. We also present some examples validating this new analytical method.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new analytical method to derive the likelihood function that has the population of parameters marginalised out in Bayesian hierarchical models. This method is also useful to find the marginal likelihoods in Bayesian models or in random-effect linear mixed models. The key to this method is to take high-order (sometimes fractional) derivatives of the prior moment-generating function if particular existence and differentiability conditions hold. In particular, this analytical method assumes that the likelihood is either Poisson or gamma. Under Poisson likelihoods, the observed Poisson count determines the order of the derivative. Under gamma likelihoods, the shape parameter, which is assumed to be known, determines the order of the fractional derivative. We also present some examples validating this new analytical method.
泊松模型和伽玛模型边际化以及使用时刻生成函数计算边际似然值
我们提出了一种新的分析方法,用于推导贝叶斯层次模型中参数群体边际似然函数。这种方法也适用于贝叶斯模型或随机效应线性混合模型中边际似然的求取。这种方法的关键在于,如果特定的存在性和可微性条件成立,则对先验矩生成函数取高阶(有时是分数)导数。特别是,这种分析方法假定似然是泊松似然或伽马似然。在泊松似然条件下,观测到的泊松计数决定导数的阶数。在伽马似然条件下,假定已知的形状参数决定分数导数的阶次。我们还列举了一些例子来验证这种新的分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信