Edge spectra of Gaussian random symmetric matrices with correlated entries

Debapratim Banerjee, Soumendu Sundar Mukherjee, Dipranjan Pal
{"title":"Edge spectra of Gaussian random symmetric matrices with correlated entries","authors":"Debapratim Banerjee, Soumendu Sundar Mukherjee, Dipranjan Pal","doi":"arxiv-2409.11381","DOIUrl":null,"url":null,"abstract":"We study the largest eigenvalue of a Gaussian random symmetric matrix $X_n$,\nwith zero-mean, unit variance entries satisfying the condition $\\sup_{(i, j)\n\\ne (i', j')}|\\mathbb{E}[X_{ij} X_{i'j'}]| = O(n^{-(1 + \\varepsilon)})$, where\n$\\varepsilon > 0$. It follows from Catalano et al. (2024) that the empirical\nspectral distribution of $n^{-1/2} X_n$ converges weakly almost surely to the\nstandard semi-circle law. Using a F\\\"{u}redi-Koml\\'{o}s-type high moment\nanalysis, we show that the largest eigenvalue $\\lambda_1(n^{-1/2} X_n)$ of\n$n^{-1/2} X_n$ converges almost surely to $2$. This result is essentially\noptimal in the sense that one cannot take $\\varepsilon = 0$ and still obtain an\nalmost sure limit of $2$. We also derive Gaussian fluctuation results for the\nlargest eigenvalue in the case where the entries have a common non-zero mean.\nLet $Y_n = X_n + \\frac{\\lambda}{\\sqrt{n}}\\mathbf{1} \\mathbf{1}^\\top$. When\n$\\varepsilon \\ge 1$ and $\\lambda \\gg n^{1/4}$, we show that \\[ n^{1/2}\\bigg(\\lambda_1(n^{-1/2} Y_n) - \\lambda - \\frac{1}{\\lambda}\\bigg)\n\\xrightarrow{d} \\sqrt{2} Z, \\] where $Z$ is a standard Gaussian. On the other\nhand, when $0 < \\varepsilon < 1$, we have $\\mathrm{Var}(\\frac{1}{n}\\sum_{i,\nj}X_{ij}) = O(n^{1 - \\varepsilon})$. Assuming that\n$\\mathrm{Var}(\\frac{1}{n}\\sum_{i, j} X_{ij}) = \\sigma^2 n^{1 - \\varepsilon} (1\n+ o(1))$, if $\\lambda \\gg n^{\\varepsilon/4}$, then we have \\[ n^{\\varepsilon/2}\\bigg(\\lambda_1(n^{-1/2} Y_n) - \\lambda -\n\\frac{1}{\\lambda}\\bigg) \\xrightarrow{d} \\sigma Z. \\] While the ranges of\n$\\lambda$ in these fluctuation results are certainly not optimal, a striking\naspect is that different scalings are required in the two regimes $0 <\n\\varepsilon < 1$ and $\\varepsilon \\ge 1$.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the largest eigenvalue of a Gaussian random symmetric matrix $X_n$, with zero-mean, unit variance entries satisfying the condition $\sup_{(i, j) \ne (i', j')}|\mathbb{E}[X_{ij} X_{i'j'}]| = O(n^{-(1 + \varepsilon)})$, where $\varepsilon > 0$. It follows from Catalano et al. (2024) that the empirical spectral distribution of $n^{-1/2} X_n$ converges weakly almost surely to the standard semi-circle law. Using a F\"{u}redi-Koml\'{o}s-type high moment analysis, we show that the largest eigenvalue $\lambda_1(n^{-1/2} X_n)$ of $n^{-1/2} X_n$ converges almost surely to $2$. This result is essentially optimal in the sense that one cannot take $\varepsilon = 0$ and still obtain an almost sure limit of $2$. We also derive Gaussian fluctuation results for the largest eigenvalue in the case where the entries have a common non-zero mean. Let $Y_n = X_n + \frac{\lambda}{\sqrt{n}}\mathbf{1} \mathbf{1}^\top$. When $\varepsilon \ge 1$ and $\lambda \gg n^{1/4}$, we show that \[ n^{1/2}\bigg(\lambda_1(n^{-1/2} Y_n) - \lambda - \frac{1}{\lambda}\bigg) \xrightarrow{d} \sqrt{2} Z, \] where $Z$ is a standard Gaussian. On the other hand, when $0 < \varepsilon < 1$, we have $\mathrm{Var}(\frac{1}{n}\sum_{i, j}X_{ij}) = O(n^{1 - \varepsilon})$. Assuming that $\mathrm{Var}(\frac{1}{n}\sum_{i, j} X_{ij}) = \sigma^2 n^{1 - \varepsilon} (1 + o(1))$, if $\lambda \gg n^{\varepsilon/4}$, then we have \[ n^{\varepsilon/2}\bigg(\lambda_1(n^{-1/2} Y_n) - \lambda - \frac{1}{\lambda}\bigg) \xrightarrow{d} \sigma Z. \] While the ranges of $\lambda$ in these fluctuation results are certainly not optimal, a striking aspect is that different scalings are required in the two regimes $0 < \varepsilon < 1$ and $\varepsilon \ge 1$.
具有相关条目的高斯随机对称矩阵的边缘谱
我们研究了一个高斯随机对称矩阵 $X_n$的最大特征值,该矩阵具有零均值、单位方差条目,满足条件 $\sup_{(i, j)\ne (i', j')}|\mathbb{E}[X_{ij} X_{i'j'}]| = O(n^{-(1+\varepsilon)})$,其中$\varepsilon > 0$。根据 Catalano 等人(2024 年)的研究,$n^{-1/2} X_n$ 的经验谱分布几乎肯定弱收敛于标准半圆律。利用 F\"{u}redi-Koml\'{o}s-type high momentanalysis,我们证明了 $n^{-1/2} X_n$ 的最大特征值 $\lambda_1(n^{-1/2} X_n)$几乎肯定收敛于 $2$。这一结果本质上是最优的,因为我们不可能取 $\varepsilon = 0$ 并仍然得到几乎确定的 2$ 极限。让 $Y_n = X_n + \frac\{lambda}{sqrt{n}}\mathbf{1}.\mathbf{1}^\top$.当$varepsilon为1且$lambda为n^{1/4}时,我们证明了([ n^{1/2}\bigg(\lambda_1(n^{-1/2} Y_n) -\lambda -\frac{1}\lambda}\bigg)\xrightarrow{d}\sqrt{2}Z, \] 其中 $Z$ 是标准高斯。另一方面,当 $0 < \varepsilon < 1 时,我们有 $\mathrm{Var}(\frac{1}{n}\sum_{i,j}X_{ij}) = O(n^{1 - \varepsilon})$。假设$\mathrm{Var}(\frac{1}{n}\sum_{i,j} X_{ij}) = \sigma^2 n^{1 - \varepsilon} (1+ o(1))$、如果 $\lambda \gg n^{\varepsilon/4}$,那么我们就有\[ n^{\varepsilon/2}\bigg(\lambda_1(n^{-1/2} Y_n) -\lambda -\frac{1}{\lambda}\bigg)\xrightarrow{d}\sigma Z.\]虽然这些波动结果中的$lambda$范围肯定不是最优的,但一个显著的方面是,在$0 <\varepsilon < 1$和$\varepsilon \ge 1$这两种情况下需要不同的标度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信