Large Deviations Principle for Bures-Wasserstein Barycenters

Adam Quinn Jaffe, Leonardo V. Santoro
{"title":"Large Deviations Principle for Bures-Wasserstein Barycenters","authors":"Adam Quinn Jaffe, Leonardo V. Santoro","doi":"arxiv-2409.11384","DOIUrl":null,"url":null,"abstract":"We prove the large deviations principle for empirical Bures-Wasserstein\nbarycenters of independent, identically-distributed samples of covariance\nmatrices and covariance operators. As an application, we explore some\nconsequences of our results for the phenomenon of dimension-free concentration\nof measure for Bures-Wasserstein barycenters. Our theory reveals a novel notion\nof exponential tilting in the Bures-Wasserstein space, which, in analogy with\nCr\\'amer's theorem in the Euclidean case, solves the relative entropy\nprojection problem under a constraint on the barycenter. Notably, this method\nof proof is easy to adapt to other geometric settings of interest; with the\nsame method, we obtain large deviations principles for empirical barycenters in\nRiemannian manifolds and the univariate Wasserstein space, and we obtain large\ndeviations upper bounds for empirical barycenters in the general multivariate\nWasserstein space. In fact, our results are the first known large deviations\nprinciples for Fr\\'echet means in any non-linear metric space.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"102 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the large deviations principle for empirical Bures-Wasserstein barycenters of independent, identically-distributed samples of covariance matrices and covariance operators. As an application, we explore some consequences of our results for the phenomenon of dimension-free concentration of measure for Bures-Wasserstein barycenters. Our theory reveals a novel notion of exponential tilting in the Bures-Wasserstein space, which, in analogy with Cr\'amer's theorem in the Euclidean case, solves the relative entropy projection problem under a constraint on the barycenter. Notably, this method of proof is easy to adapt to other geometric settings of interest; with the same method, we obtain large deviations principles for empirical barycenters in Riemannian manifolds and the univariate Wasserstein space, and we obtain large deviations upper bounds for empirical barycenters in the general multivariate Wasserstein space. In fact, our results are the first known large deviations principles for Fr\'echet means in any non-linear metric space.
布雷斯-瓦塞尔斯坦原点的大偏差原理
我们证明了独立、同分布样本协方差矩阵和协方差算子的经验布雷斯-瓦瑟斯坦双中心的大偏差原理。作为一种应用,我们探讨了我们的结果对布雷斯-瓦瑟斯坦副中心无维度度量集中现象的一些影响。我们的理论揭示了布雷斯-瓦瑟斯坦空间中指数倾斜的新概念,与欧几里得情况下的卡梅尔定理类似,它解决了在原点约束下的相对熵投影问题。值得注意的是,这种证明方法很容易适用于其他感兴趣的几何环境;用同样的方法,我们得到了黎曼流形和单变量瓦瑟斯坦空间中经验原点的大偏差原理,并得到了一般多变量瓦瑟斯坦空间中经验原点的大偏差上界。事实上,我们的结果是第一个已知的非线性度量空间中 Fr\'echet 均值的大偏差原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信