Sparse Factor Analysis for Categorical Data with the Group-Sparse Generalized Singular Value Decomposition

Ju-Chi YuCAMH, Julie Le BorgneRID-AGE, CHRU Lille, Anjali KrishnanCUNY, Arnaud GloaguenCNRGH, JACOB, Cheng-Ta YangNCKU, Laura A RabinCUNY, Hervé AbdiUT Dallas, Vincent Guillemot
{"title":"Sparse Factor Analysis for Categorical Data with the Group-Sparse Generalized Singular Value Decomposition","authors":"Ju-Chi YuCAMH, Julie Le BorgneRID-AGE, CHRU Lille, Anjali KrishnanCUNY, Arnaud GloaguenCNRGH, JACOB, Cheng-Ta YangNCKU, Laura A RabinCUNY, Hervé AbdiUT Dallas, Vincent Guillemot","doi":"arxiv-2409.11789","DOIUrl":null,"url":null,"abstract":"Correspondence analysis, multiple correspondence analysis and their\ndiscriminant counterparts (i.e., discriminant simple correspondence analysis\nand discriminant multiple correspondence analysis) are methods of choice for\nanalyzing multivariate categorical data. In these methods, variables are\nintegrated into optimal components computed as linear combinations whose\nweights are obtained from a generalized singular value decomposition (GSVD)\nthat integrates specific metric constraints on the rows and columns of the\noriginal data matrix. The weights of the linear combinations are, in turn, used\nto interpret the components, and this interpretation is facilitated when\ncomponents are 1) pairwise orthogonal and 2) when the values of the weights are\neither large or small but not intermediate-a pattern called a simple or a\nsparse structure. To obtain such simple configurations, the optimization\nproblem solved by the GSVD is extended to include new constraints that\nimplement component orthogonality and sparse weights. Because multiple\ncorrespondence analysis represents qualitative variables by a set of binary\nvariables, an additional group constraint is added to the optimization problem\nin order to sparsify the whole set representing one qualitative variable. This\nnew algorithm-called group-sparse GSVD (gsGSVD)-integrates these constraints\nvia an iterative projection scheme onto the intersection of subspaces where\neach subspace implements a specific constraint. In this paper, we expose this\nnew algorithm and show how it can be adapted to the sparsification of simple\nand multiple correspondence analysis, and illustrate its applications with the\nanalysis of four different data sets-each illustrating the sparsification of a\nparticular CA-based analysis.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Correspondence analysis, multiple correspondence analysis and their discriminant counterparts (i.e., discriminant simple correspondence analysis and discriminant multiple correspondence analysis) are methods of choice for analyzing multivariate categorical data. In these methods, variables are integrated into optimal components computed as linear combinations whose weights are obtained from a generalized singular value decomposition (GSVD) that integrates specific metric constraints on the rows and columns of the original data matrix. The weights of the linear combinations are, in turn, used to interpret the components, and this interpretation is facilitated when components are 1) pairwise orthogonal and 2) when the values of the weights are either large or small but not intermediate-a pattern called a simple or a sparse structure. To obtain such simple configurations, the optimization problem solved by the GSVD is extended to include new constraints that implement component orthogonality and sparse weights. Because multiple correspondence analysis represents qualitative variables by a set of binary variables, an additional group constraint is added to the optimization problem in order to sparsify the whole set representing one qualitative variable. This new algorithm-called group-sparse GSVD (gsGSVD)-integrates these constraints via an iterative projection scheme onto the intersection of subspaces where each subspace implements a specific constraint. In this paper, we expose this new algorithm and show how it can be adapted to the sparsification of simple and multiple correspondence analysis, and illustrate its applications with the analysis of four different data sets-each illustrating the sparsification of a particular CA-based analysis.
利用组-解析广义奇异值分解对分类数据进行稀疏因子分析
对应分析、多重对应分析及其对应的判别分析(即判别简单对应分析和判别多重对应分析)是分析多元分类数据的首选方法。在这些方法中,变量被整合为最优成分,计算为线性组合,其权重来自广义奇异值分解(GSVD),该分解整合了原始数据矩阵行和列的特定度量约束。反过来,线性组合的权重也用于解释成分,当成分 1)成对正交,2)权重值或大或小,但不是中间值时,这种解释就会变得容易--这种模式被称为简单或稀疏结构。为了获得这种简单结构,GSVD 所求解的优化问题被扩展到包括新的约束条件,以实现成分正交和权重稀疏。由于多重对应分析用一组二进制变量表示定性变量,因此在优化问题中增加了一个额外的组约束,以稀疏化代表一个定性变量的整个组。这种新算法被称为组稀疏 GSVD(gsGSVD),它通过迭代投影方案将这些约束整合到子空间的交集上,其中每个子空间都实现了特定的约束。在本文中,我们揭示了这种新算法,并展示了它如何适用于简单和多重对应分析的稀疏化,还通过分析四个不同的数据集说明了它的应用--每个数据集都说明了基于 CA 的特定分析的稀疏化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信