Cyclicity Analysis of the Ornstein-Uhlenbeck Process

Vivek Kaushik
{"title":"Cyclicity Analysis of the Ornstein-Uhlenbeck Process","authors":"Vivek Kaushik","doi":"arxiv-2409.12102","DOIUrl":null,"url":null,"abstract":"In this thesis, we consider an $N$-dimensional Ornstein-Uhlenbeck (OU)\nprocess satisfying the linear stochastic differential equation $d\\mathbf x(t) =\n- \\mathbf B\\mathbf x(t) dt + \\boldsymbol \\Sigma d \\mathbf w(t).$ Here, $\\mathbf\nB$ is a fixed $N \\times N$ circulant friction matrix whose eigenvalues have\npositive real parts, $\\boldsymbol \\Sigma$ is a fixed $N \\times M$ matrix. We\nconsider a signal propagation model governed by this OU process. In this model,\nan underlying signal propagates throughout a network consisting of $N$ linked\nsensors located in space. We interpret the $n$-th component of the OU process\nas the measurement of the propagating effect made by the $n$-th sensor. The\nmatrix $\\mathbf B$ represents the sensor network structure: if $\\mathbf B$ has\nfirst row $(b_1 \\ , \\ \\dots \\ , \\ b_N),$ where $b_1>0$ and $b_2 \\ , \\ \\dots \\\n,\\ b_N \\le 0,$ then the magnitude of $b_p$ quantifies how receptive the $n$-th\nsensor is to activity within the $(n+p-1)$-th sensor. Finally, the $(m,n)$-th\nentry of the matrix $\\mathbf D = \\frac{\\boldsymbol \\Sigma \\boldsymbol\n\\Sigma^\\text T}{2}$ is the covariance of the component noises injected into the\n$m$-th and $n$-th sensors. For different choices of $\\mathbf B$ and\n$\\boldsymbol \\Sigma,$ we investigate whether Cyclicity Analysis enables us to\nrecover the structure of network. Roughly speaking, Cyclicity Analysis studies\nthe lead-lag dynamics pertaining to the components of a multivariate signal. We\nspecifically consider an $N \\times N$ skew-symmetric matrix $\\mathbf Q,$ known\nas the lead matrix, in which the sign of its $(m,n)$-th entry captures the\nlead-lag relationship between the $m$-th and $n$-th component OU processes. We\ninvestigate whether the structure of the leading eigenvector of $\\mathbf Q,$\nthe eigenvector corresponding to the largest eigenvalue of $\\mathbf Q$ in\nmodulus, reflects the network structure induced by $\\mathbf B.$","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this thesis, we consider an $N$-dimensional Ornstein-Uhlenbeck (OU) process satisfying the linear stochastic differential equation $d\mathbf x(t) = - \mathbf B\mathbf x(t) dt + \boldsymbol \Sigma d \mathbf w(t).$ Here, $\mathbf B$ is a fixed $N \times N$ circulant friction matrix whose eigenvalues have positive real parts, $\boldsymbol \Sigma$ is a fixed $N \times M$ matrix. We consider a signal propagation model governed by this OU process. In this model, an underlying signal propagates throughout a network consisting of $N$ linked sensors located in space. We interpret the $n$-th component of the OU process as the measurement of the propagating effect made by the $n$-th sensor. The matrix $\mathbf B$ represents the sensor network structure: if $\mathbf B$ has first row $(b_1 \ , \ \dots \ , \ b_N),$ where $b_1>0$ and $b_2 \ , \ \dots \ ,\ b_N \le 0,$ then the magnitude of $b_p$ quantifies how receptive the $n$-th sensor is to activity within the $(n+p-1)$-th sensor. Finally, the $(m,n)$-th entry of the matrix $\mathbf D = \frac{\boldsymbol \Sigma \boldsymbol \Sigma^\text T}{2}$ is the covariance of the component noises injected into the $m$-th and $n$-th sensors. For different choices of $\mathbf B$ and $\boldsymbol \Sigma,$ we investigate whether Cyclicity Analysis enables us to recover the structure of network. Roughly speaking, Cyclicity Analysis studies the lead-lag dynamics pertaining to the components of a multivariate signal. We specifically consider an $N \times N$ skew-symmetric matrix $\mathbf Q,$ known as the lead matrix, in which the sign of its $(m,n)$-th entry captures the lead-lag relationship between the $m$-th and $n$-th component OU processes. We investigate whether the structure of the leading eigenvector of $\mathbf Q,$ the eigenvector corresponding to the largest eigenvalue of $\mathbf Q$ in modulus, reflects the network structure induced by $\mathbf B.$
奥恩斯坦-乌伦贝克过程的周期性分析
在本论文中,我们考虑一个 $N$ 维的奥恩斯坦-乌伦贝克(OU)过程,该过程满足线性随机微分方程 $d\mathbf x(t) =- \mathbf B\mathbf x(t) dt + \boldsymbol \Sigma d \mathbf w(t)。这里,$\mathbfB$是一个固定的$N \times N$环形摩擦矩阵,其特征值的实部为正,$\boldsymbol \Sigma$是一个固定的$N \times M$矩阵。我们将考虑一个受此 OU 过程控制的信号传播模型。在这个模型中,一个基本信号在由位于空间的 $N$ 链接传感器组成的网络中传播。我们将 OU 过程的第 n 个分量解释为第 n 个传感器对传播效果的测量。矩阵 $\mathbf B$ 表示传感器网络结构:如果 $\mathbf B$ 的第一行为 $(b_1 \ , \ dots \ , \ b_N), $ 其中 $b_1>0$ 并且 $b_2 \ , \ dots \ , \ b_N \le 0, $ 那么 $b_p$ 的大小量化了 $n$-th 传感器对 $(n+p-1)$-th 传感器内活动的接受程度。最后,矩阵 $\mathbf D = \frac\{boldsymbol \Sigma \Sigma^\text T}{2}$ 的 $(m,n)$ 条目是注入 $m$-th 和 $n$-th 传感器的分量噪声的协方差。对于 $\mathbf B$ 和 $\boldsymbol \Sigma$ 的不同选择,我们研究了循环分析是否能让我们恢复网络结构。粗略地说,循环分析研究的是多变量信号成分的前导-滞后动态。我们特别考虑了一个 $N \times N$ 的倾斜对称矩阵 $/mathbf Q,$ 称为先导矩阵,其中 $(m,n)$-th 条目的符号捕捉了 $m$-th 和 $n$-th 分量 OU 过程之间的先导-滞后关系。我们研究了$\mathbf Q的前导特征向量的结构,即对应于$\mathbf Q的最大特征值的特征向量,是否反映了$\mathbf B所诱导的网络结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信