Integrating Neural Operators with Diffusion Models Improves Spectral Representation in Turbulence Modeling

Vivek Oommen, Aniruddha Bora, Zhen Zhang, George Em Karniadakis
{"title":"Integrating Neural Operators with Diffusion Models Improves Spectral Representation in Turbulence Modeling","authors":"Vivek Oommen, Aniruddha Bora, Zhen Zhang, George Em Karniadakis","doi":"arxiv-2409.08477","DOIUrl":null,"url":null,"abstract":"We integrate neural operators with diffusion models to address the spectral\nlimitations of neural operators in surrogate modeling of turbulent flows. While\nneural operators offer computational efficiency, they exhibit deficiencies in\ncapturing high-frequency flow dynamics, resulting in overly smooth\napproximations. To overcome this, we condition diffusion models on neural\noperators to enhance the resolution of turbulent structures. Our approach is\nvalidated for different neural operators on diverse datasets, including a high\nReynolds number jet flow simulation and experimental Schlieren velocimetry. The\nproposed method significantly improves the alignment of predicted energy\nspectra with true distributions compared to neural operators alone.\nAdditionally, proper orthogonal decomposition analysis demonstrates enhanced\nspectral fidelity in space-time. This work establishes a new paradigm for\ncombining generative models with neural operators to advance surrogate modeling\nof turbulent systems, and it can be used in other scientific applications that\ninvolve microstructure and high-frequency content. See our project page:\nvivekoommen.github.io/NO_DM","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We integrate neural operators with diffusion models to address the spectral limitations of neural operators in surrogate modeling of turbulent flows. While neural operators offer computational efficiency, they exhibit deficiencies in capturing high-frequency flow dynamics, resulting in overly smooth approximations. To overcome this, we condition diffusion models on neural operators to enhance the resolution of turbulent structures. Our approach is validated for different neural operators on diverse datasets, including a high Reynolds number jet flow simulation and experimental Schlieren velocimetry. The proposed method significantly improves the alignment of predicted energy spectra with true distributions compared to neural operators alone. Additionally, proper orthogonal decomposition analysis demonstrates enhanced spectral fidelity in space-time. This work establishes a new paradigm for combining generative models with neural operators to advance surrogate modeling of turbulent systems, and it can be used in other scientific applications that involve microstructure and high-frequency content. See our project page: vivekoommen.github.io/NO_DM
将神经算子与扩散模型相结合可改进湍流建模中的频谱表示法
我们将神经算子与扩散模型相结合,以解决神经算子在湍流代用建模中的频谱限制问题。虽然神经算子具有很高的计算效率,但它们在捕捉高频流动动态方面存在缺陷,导致逼近结果过于平滑。为了克服这一问题,我们以神经算子为条件建立扩散模型,以提高湍流结构的分辨率。我们的方法在不同的数据集上对不同的神经算子进行了验证,包括高雷诺数射流模拟和实验性 Schlieren 测速。此外,适当的正交分解分析表明,时空光谱保真度得到了提高。这项工作为将生成模型与神经算子相结合以推进湍流系统的代理建模建立了一个新范例,它还可用于其他涉及微观结构和高频内容的科学应用。请参阅我们的项目页面:vivekoommen.github.io/NO_DM
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信