Jonas R. Naujoks, Aleksander Krasowski, Moritz Weckbecker, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek, René P. Klausen
{"title":"PINNfluence: Influence Functions for Physics-Informed Neural Networks","authors":"Jonas R. Naujoks, Aleksander Krasowski, Moritz Weckbecker, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek, René P. Klausen","doi":"arxiv-2409.08958","DOIUrl":null,"url":null,"abstract":"Recently, physics-informed neural networks (PINNs) have emerged as a flexible\nand promising application of deep learning to partial differential equations in\nthe physical sciences. While offering strong performance and competitive\ninference speeds on forward and inverse problems, their black-box nature limits\ninterpretability, particularly regarding alignment with expected physical\nbehavior. In the present work, we explore the application of influence\nfunctions (IFs) to validate and debug PINNs post-hoc. Specifically, we apply\nvariations of IF-based indicators to gauge the influence of different types of\ncollocation points on the prediction of PINNs applied to a 2D Navier-Stokes\nfluid flow problem. Our results demonstrate how IFs can be adapted to PINNs to\nreveal the potential for further studies.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, physics-informed neural networks (PINNs) have emerged as a flexible
and promising application of deep learning to partial differential equations in
the physical sciences. While offering strong performance and competitive
inference speeds on forward and inverse problems, their black-box nature limits
interpretability, particularly regarding alignment with expected physical
behavior. In the present work, we explore the application of influence
functions (IFs) to validate and debug PINNs post-hoc. Specifically, we apply
variations of IF-based indicators to gauge the influence of different types of
collocation points on the prediction of PINNs applied to a 2D Navier-Stokes
fluid flow problem. Our results demonstrate how IFs can be adapted to PINNs to
reveal the potential for further studies.