OpenACC offloading of the MFC compressible multiphase flow solver on AMD and NVIDIA GPUs

Benjamin Wilfong, Anand Radhakrishnan, Henry A. Le Berre, Steve Abbott, Reuben D. Budiardja, Spencer H. Bryngelson
{"title":"OpenACC offloading of the MFC compressible multiphase flow solver on AMD and NVIDIA GPUs","authors":"Benjamin Wilfong, Anand Radhakrishnan, Henry A. Le Berre, Steve Abbott, Reuben D. Budiardja, Spencer H. Bryngelson","doi":"arxiv-2409.10729","DOIUrl":null,"url":null,"abstract":"GPUs are the heart of the latest generations of supercomputers. We\nefficiently accelerate a compressible multiphase flow solver via OpenACC on\nNVIDIA and AMD Instinct GPUs. Optimization is accomplished by specifying the\ndirective clauses 'gang vector' and 'collapse'. Further speedups of six and ten\ntimes are achieved by packing user-defined types into coalesced\nmultidimensional arrays and manual inlining via metaprogramming. Additional\noptimizations yield seven-times speedup in array packing and thirty-times\nspeedup of select kernels on Frontier. Weak scaling efficiencies of 97% and 95%\nare observed when scaling to 50% of Summit and 95% of Frontier. Strong scaling\nefficiencies of 84% and 81% are observed when increasing the device count by a\nfactor of 8 and 16 on V100 and MI250X hardware. The strong scaling efficiency\nof AMD's MI250X increases to 92% when increasing the device count by a factor\nof 16 when GPU-aware MPI is used for communication.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

GPUs are the heart of the latest generations of supercomputers. We efficiently accelerate a compressible multiphase flow solver via OpenACC on NVIDIA and AMD Instinct GPUs. Optimization is accomplished by specifying the directive clauses 'gang vector' and 'collapse'. Further speedups of six and ten times are achieved by packing user-defined types into coalesced multidimensional arrays and manual inlining via metaprogramming. Additional optimizations yield seven-times speedup in array packing and thirty-times speedup of select kernels on Frontier. Weak scaling efficiencies of 97% and 95% are observed when scaling to 50% of Summit and 95% of Frontier. Strong scaling efficiencies of 84% and 81% are observed when increasing the device count by a factor of 8 and 16 on V100 and MI250X hardware. The strong scaling efficiency of AMD's MI250X increases to 92% when increasing the device count by a factor of 16 when GPU-aware MPI is used for communication.
在 AMD 和 NVIDIA GPU 上卸载 MFC 可压缩多相流求解器的 OpenACC 功能
GPU 是最新一代超级计算机的核心。我们通过 OpenACC 在英伟达™(NVIDIA®)和 AMD Instinct GPU 上对可压缩多相流求解器进行了有效加速。优化是通过指定 "gang vector "和 "collapse "指令来实现的。通过将用户定义的类型打包到聚合多维数组中,并通过元编程手动内联,速度进一步提高了六倍和十倍。通过其他优化,数组打包速度提高了 7 倍,Frontier 上的选择内核速度提高了 30 倍。当扩展到 50% 的 Summit 和 95% 的 Frontier 时,观察到的弱扩展效率分别为 97% 和 95%。当在 V100 和 MI250X 硬件上将设备数增加 8 和 16 倍时,可观察到 84% 和 81% 的强扩展效率。在使用 GPU 感知 MPI 进行通信时,当设备数增加 16 倍时,AMD 的 MI250X 的强大扩展效率提高到 92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信