Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability?

Kirsten J. Mayer, Katherine Dagon, Maria J. Molina
{"title":"Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability?","authors":"Kirsten J. Mayer, Katherine Dagon, Maria J. Molina","doi":"arxiv-2409.10755","DOIUrl":null,"url":null,"abstract":"Previous research has demonstrated that specific states of the climate system\ncan lead to enhanced subseasonal predictability (i.e., state-dependent\npredictability). However, biases in Earth system models can affect the\nrepresentation of these states and their subsequent evolution. Here, we present\na machine learning framework to identify state-dependent biases in Earth system\nmodels. In particular, we investigate the utility of transfer learning with\nexplainable neural networks to identify tropical state-dependent biases in\nhistorical simulations of the Energy Exascale Earth System Model version 2\n(E3SMv2) relevant for midlatitude subseasonal predictability. Using a perfect\nmodel framework, we find transfer learning may require substantially more data\nthan provided by present-day reanalysis datasets to update neural network\nweights, imparting a cautionary tale for future transfer learning approaches\nfocused on subseasonal modes of variability.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"189 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Previous research has demonstrated that specific states of the climate system can lead to enhanced subseasonal predictability (i.e., state-dependent predictability). However, biases in Earth system models can affect the representation of these states and their subsequent evolution. Here, we present a machine learning framework to identify state-dependent biases in Earth system models. In particular, we investigate the utility of transfer learning with explainable neural networks to identify tropical state-dependent biases in historical simulations of the Energy Exascale Earth System Model version 2 (E3SMv2) relevant for midlatitude subseasonal predictability. Using a perfect model framework, we find transfer learning may require substantially more data than provided by present-day reanalysis datasets to update neural network weights, imparting a cautionary tale for future transfer learning approaches focused on subseasonal modes of variability.
能否利用迁移学习来识别与中纬度副季节可预报性相关的热带状态偏差?
以往的研究表明,气候系统的特定状态会导致副季节可预测性增强(即状态依赖可预测性)。然而,地球系统模式中的偏差会影响这些状态的呈现及其随后的演变。在这里,我们提出了一个机器学习框架来识别地球系统模型中与状态相关的偏差。特别是,我们研究了利用可解释的神经网络进行迁移学习的实用性,以识别能源超大规模地球系统模式第 2 版(ESMv2)历史模拟中与中纬度亚季节可预测性相关的热带状态依赖性偏差。利用完美模式框架,我们发现迁移学习可能需要现今再分析数据集提供的更多数据来更新神经网络权重,这为未来以副季节变率模式为重点的迁移学习方法提供了警示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信