Enumerating Minimal Unsatisfiable Cores of LTLf formulas

Antonio Ielo, Giuseppe Mazzotta, Rafael Peñaloza, Francesco Ricca
{"title":"Enumerating Minimal Unsatisfiable Cores of LTLf formulas","authors":"Antonio Ielo, Giuseppe Mazzotta, Rafael Peñaloza, Francesco Ricca","doi":"arxiv-2409.09485","DOIUrl":null,"url":null,"abstract":"Linear Temporal Logic over finite traces ($\\text{LTL}_f$) is a widely used\nformalism with applications in AI, process mining, model checking, and more.\nThe primary reasoning task for $\\text{LTL}_f$ is satisfiability checking; yet,\nthe recent focus on explainable AI has increased interest in analyzing\ninconsistent formulas, making the enumeration of minimal explanations for\ninfeasibility a relevant task also for $\\text{LTL}_f$. This paper introduces a\nnovel technique for enumerating minimal unsatisfiable cores (MUCs) of an\n$\\text{LTL}_f$ specification. The main idea is to encode a $\\text{LTL}_f$\nformula into an Answer Set Programming (ASP) specification, such that the\nminimal unsatisfiable subsets (MUSes) of the ASP program directly correspond to\nthe MUCs of the original $\\text{LTL}_f$ specification. Leveraging recent\nadvancements in ASP solving yields a MUC enumerator achieving good performance\nin experiments conducted on established benchmarks from the literature.","PeriodicalId":501208,"journal":{"name":"arXiv - CS - Logic in Computer Science","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Linear Temporal Logic over finite traces ($\text{LTL}_f$) is a widely used formalism with applications in AI, process mining, model checking, and more. The primary reasoning task for $\text{LTL}_f$ is satisfiability checking; yet, the recent focus on explainable AI has increased interest in analyzing inconsistent formulas, making the enumeration of minimal explanations for infeasibility a relevant task also for $\text{LTL}_f$. This paper introduces a novel technique for enumerating minimal unsatisfiable cores (MUCs) of an $\text{LTL}_f$ specification. The main idea is to encode a $\text{LTL}_f$ formula into an Answer Set Programming (ASP) specification, such that the minimal unsatisfiable subsets (MUSes) of the ASP program directly correspond to the MUCs of the original $\text{LTL}_f$ specification. Leveraging recent advancements in ASP solving yields a MUC enumerator achieving good performance in experiments conducted on established benchmarks from the literature.
枚举 LTLf 公式的最小不可满足核心
有限踪迹线性时态逻辑($\text{LTL}_f$)是一种广泛使用的形式主义,在人工智能、流程挖掘、模型检查等领域都有应用。$\text{LTL}_f$的主要推理任务是可满足性检查;然而,最近对可解释人工智能的关注增加了人们对分析不一致公式的兴趣,使得枚举最小不满足解释也成为$\text{LTL}_f$的一项相关任务。本文介绍了一种枚举$\text{LTL}_f$规范的最小不可满足核心(MUCs)的新技术。其主要思想是将$text{LTL}_f$公式编码成答案集编程(ASP)规范,从而使ASP程序的最小不可满足子集(MUSes)直接对应于原始$text{LTL}_f$规范的MUCs。利用ASP解法的最新进展,MUC枚举器在文献中的既定基准实验中取得了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信