Matrix-weighted Besov-type and Triebel–Lizorkin-type spaces III: characterizations of molecules and wavelets, trace theorems, and boundedness of pseudo-differential operators and Calderón–Zygmund operators

IF 1 3区 数学 Q1 MATHEMATICS
Fan Bu, Tuomas Hytönen, Dachun Yang, Wen Yuan
{"title":"Matrix-weighted Besov-type and Triebel–Lizorkin-type spaces III: characterizations of molecules and wavelets, trace theorems, and boundedness of pseudo-differential operators and Calderón–Zygmund operators","authors":"Fan Bu, Tuomas Hytönen, Dachun Yang, Wen Yuan","doi":"10.1007/s00209-024-03584-8","DOIUrl":null,"url":null,"abstract":"<p>This is the last one of three successive articles by the authors on matrix-weighted Besov-type and Triebel–Lizorkin-type spaces <span>\\(\\dot{B}^{s,\\tau }_{p,q}(W)\\)</span> and <span>\\(\\dot{F}^{s,\\tau }_{p,q}(W)\\)</span>. In this article, the authors establish the molecular and the wavelet characterizations of these spaces. Furthermore, as applications, the authors obtain the optimal boundedness of trace operators, pseudo-differential operators, and Calderón–Zygmund operators on these spaces. Due to the sharp boundedness of almost diagonal operators on their related sequence spaces obtained in the second article of this series, all results presented in this article improve their counterparts on matrix-weighted Besov and Triebel–Lizorkin spaces <span>\\(\\dot{B}^{s}_{p,q}(W)\\)</span> and <span>\\(\\dot{F}^{s}_{p,q}(W)\\)</span>. In particular, even when reverting to the boundedness of Calderón–Zygmund operators on unweighted Triebel–Lizorkin spaces <span>\\(\\dot{F}^{s}_{p,q}\\)</span>, these results are still better.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03584-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This is the last one of three successive articles by the authors on matrix-weighted Besov-type and Triebel–Lizorkin-type spaces \(\dot{B}^{s,\tau }_{p,q}(W)\) and \(\dot{F}^{s,\tau }_{p,q}(W)\). In this article, the authors establish the molecular and the wavelet characterizations of these spaces. Furthermore, as applications, the authors obtain the optimal boundedness of trace operators, pseudo-differential operators, and Calderón–Zygmund operators on these spaces. Due to the sharp boundedness of almost diagonal operators on their related sequence spaces obtained in the second article of this series, all results presented in this article improve their counterparts on matrix-weighted Besov and Triebel–Lizorkin spaces \(\dot{B}^{s}_{p,q}(W)\) and \(\dot{F}^{s}_{p,q}(W)\). In particular, even when reverting to the boundedness of Calderón–Zygmund operators on unweighted Triebel–Lizorkin spaces \(\dot{F}^{s}_{p,q}\), these results are still better.

矩阵加权贝索夫型和特里贝尔-利佐尔金型空间 III:分子和小波的特性、迹定理以及伪微分算子和卡尔德龙-齐格蒙算子的有界性
这是作者连续发表的三篇关于矩阵加权贝索夫型和特里贝尔-利佐金型空间(\dot{B}^{s,\tau }_{p,q}(W)\)和(\dot{F}^{s,\tau }_{p,q}(W)\)的文章中的最后一篇。在本文中,作者建立了这些空间的分子特征和小波特征。此外,作为应用,作者还得到了这些空间上的迹算子、伪微分算子和卡尔德龙-齐格蒙算子的最优有界性。由于在本系列的第二篇文章中得到了几乎对角线算子在其相关序列空间上的尖锐有界性,本文提出的所有结果都改进了它们在矩阵加权贝索夫和特里贝尔-利佐金空间\(\dot{B}^{s}_{p,q}(W)\)和\(\dot{F}^{s}_{p,q}(W)\)上的对应结果。特别是,即使回到无权特里贝尔-利佐金空间 \(\dot{F}^{s}_{p,q}\)上的卡尔德龙-齐格蒙算子的有界性,这些结果仍然更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信