Tropicalization through the lens of Łukasiewicz logic, with a topos theoretic perspective

Antonio Di Nola, Giacomo Lenzi, Brunella Gerla
{"title":"Tropicalization through the lens of Łukasiewicz logic, with a topos theoretic perspective","authors":"Antonio Di Nola, Giacomo Lenzi, Brunella Gerla","doi":"arxiv-2409.08682","DOIUrl":null,"url":null,"abstract":"The main aim of this paper is to show that the topics of {\\L}ukasiewicz\nlogic, semirings and tropical structures fruitfully meet. This gives rise to a\ntopos theoretic perspective to {\\L}ukasiewicz logic. A functorial\ntropicalization of MV-algebras in the variety V(C) is proposed. We further\nconsider a logic based on perfect MV-algebras and having truth values that are\nperturbations of boolean values, and we show how this logic can exhibit models\nfunctorially connected with points of a non-commutative geometry.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main aim of this paper is to show that the topics of {\L}ukasiewicz logic, semirings and tropical structures fruitfully meet. This gives rise to a topos theoretic perspective to {\L}ukasiewicz logic. A functorial tropicalization of MV-algebras in the variety V(C) is proposed. We further consider a logic based on perfect MV-algebras and having truth values that are perturbations of boolean values, and we show how this logic can exhibit models functorially connected with points of a non-commutative geometry.
以拓扑理论为视角,从卢卡谢维奇逻辑的角度看热带化问题
本文的主要目的是证明{\L}ukasiewicz逻辑、语义和热带结构等主题是富有成果的。这给{\L}ukasiewicz逻辑带来了topos理论的视角。我们提出了在V(C)中对MV-代数进行函数化的方法。我们进一步考虑了一种基于完备MV-词组的逻辑,它的真值是布尔值的扰动,我们展示了这种逻辑如何展示与非交换几何的点在扇形上相连的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信