Globally solving the fractional squared least squares model for GPS localization

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Xiaoli Cen, Yong Xia
{"title":"Globally solving the fractional squared least squares model for GPS localization","authors":"Xiaoli Cen, Yong Xia","doi":"10.1007/s11075-024-01935-4","DOIUrl":null,"url":null,"abstract":"<p>This study presents a new branch and bound algorithm designed for the global optimization of the fractional squared least squares model for GPS localization. The algorithm incorporates a novel underestimation approach that provides theoretically superior lower bounds while requiring a comparable computational effort to the current approach. Numerical results demonstrate the substantial efficiency enhancements of the proposed algorithm over the existing algorithm.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"20 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01935-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a new branch and bound algorithm designed for the global optimization of the fractional squared least squares model for GPS localization. The algorithm incorporates a novel underestimation approach that provides theoretically superior lower bounds while requiring a comparable computational effort to the current approach. Numerical results demonstrate the substantial efficiency enhancements of the proposed algorithm over the existing algorithm.

Abstract Image

全局求解用于 GPS 定位的分数平方最小二乘模型
本研究提出了一种新的分支和约束算法,旨在对用于 GPS 定位的分数平方最小二乘法模型进行全局优化。该算法采用了一种新颖的低估方法,可提供理论上更优越的下限,同时所需的计算量与当前方法相当。数值结果表明,与现有算法相比,拟议算法大大提高了效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信