A note on generalized Floater–Hormann interpolation at arbitrary distributions of nodes

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Woula Themistoclakis, Marc Van Barel
{"title":"A note on generalized Floater–Hormann interpolation at arbitrary distributions of nodes","authors":"Woula Themistoclakis, Marc Van Barel","doi":"10.1007/s11075-024-01933-6","DOIUrl":null,"url":null,"abstract":"<p>The paper is concerned with a generalization of Floater–Hormann (briefly FH) rational interpolation recently introduced by the authors. Compared with the original FH interpolants, the generalized ones depend on an additional integer parameter <span>\\(\\gamma &gt;1\\)</span>, that, in the limit case <span>\\(\\gamma =1\\)</span> returns the classical FH definition. Here we focus on the general case of an arbitrary distribution of nodes and, for any <span>\\(\\gamma &gt;1\\)</span>, we estimate the sup norm of the error in terms of the maximum (<i>h</i>) and minimum (<span>\\(h^*\\)</span>) distance between two consecutive nodes. In the special case of equidistant (<span>\\(h=h^*\\)</span>) or quasi–equidistant (<span>\\(h\\approx h^*\\)</span>) nodes, the new estimate improves previous results requiring some theoretical restrictions on <span>\\(\\gamma \\)</span> which are not needed as shown by the numerical tests carried out to validate the theory.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"64 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01933-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is concerned with a generalization of Floater–Hormann (briefly FH) rational interpolation recently introduced by the authors. Compared with the original FH interpolants, the generalized ones depend on an additional integer parameter \(\gamma >1\), that, in the limit case \(\gamma =1\) returns the classical FH definition. Here we focus on the general case of an arbitrary distribution of nodes and, for any \(\gamma >1\), we estimate the sup norm of the error in terms of the maximum (h) and minimum (\(h^*\)) distance between two consecutive nodes. In the special case of equidistant (\(h=h^*\)) or quasi–equidistant (\(h\approx h^*\)) nodes, the new estimate improves previous results requiring some theoretical restrictions on \(\gamma \) which are not needed as shown by the numerical tests carried out to validate the theory.

Abstract Image

关于任意节点分布的广义浮子-霍尔曼插值法的说明
本文关注的是作者最近提出的浮子-霍尔曼(Floater-Hormann,简称 FH)有理插值法的广义化。与原始的 FH 插值法相比,广义的 FH 插值法依赖于一个额外的整数参数 \(\gamma >1\),在极限情况下 \(\gamma =1\)返回经典的 FH 定义。在这里,我们将重点放在任意节点分布的一般情况上,对于任意的 (\(\gamma >1\)),我们用两个连续节点之间的最大(h)和最小(\(h^*\))距离来估计误差的 sup norm。在等距(h=h^*\)或准等距(h\approx h^*\)节点的特殊情况下,新的估计改进了以前的结果,以前的结果需要对\(\gamma \)进行一些理论限制,而为了验证理论而进行的数值测试表明并不需要这些限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信